OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 2459–2466

Coherence effects in digital in-line holographic microscopy

Unnikrishnan Gopinathan, Giancarlo Pedrini, and Wolfgang Osten  »View Author Affiliations

JOSA A, Vol. 25, Issue 10, pp. 2459-2466 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (812 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We analyze the effects of partial coherence in the image formation of a digital in-line holographic microscope (DIHM). The impulse response is described as a function of cross-spectral density of the light used in the space-frequency domain. Numerical simulation based on the applied model shows that a reduction in coherence of light leads to broadening of the impulse response. This is also validated by results from experiments wherein a DIHM is used to image latex beads using light with different spatial and temporal coherence.

© 2008 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.4070) Coherence and statistical optics : Modes
(170.0180) Medical optics and biotechnology : Microscopy
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: June 12, 2008
Manuscript Accepted: July 21, 2008
Published: September 17, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Unnikrishnan Gopinathan, Giancarlo Pedrini, and Wolfgang Osten, "Coherence effects in digital in-line holographic microscopy," J. Opt. Soc. Am. A 25, 2459-2466 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948). [CrossRef] [PubMed]
  2. U. Schnars, H.-J. Hartman, and W. Jüptner, Digital Holography (Springer-Verlag, 2004).
  3. J. J. Barton, “Removing multiple scattering and twin images from holographic images,” Phys. Rev. Lett. 67, 3106-3109 (1991). [CrossRef] [PubMed]
  4. T. Latychevskaia and H.-W. Fink, “Solution to the twin image problem in holography,” Phys. Rev. Lett. 98, 233901 (2007). [CrossRef] [PubMed]
  5. G. Situ, J. P. Ryle, U. Gopinathan, and J. T. Sheridan, “Generalised in-line digital holographic technique based on intensity measurements at two different planes,” Appl. Opt. 47, 711-717 (2008). [CrossRef] [PubMed]
  6. M. Takeda, W. Wang, Z. Duan, and Y. Miyamoto, “Coherence holography,” Opt. Express 13, 9629-9635 (2005). [CrossRef] [PubMed]
  7. J. J. Barton, “Photoelectron holography,” Phys. Rev. Lett. 61, 1356-1359 (1988). [CrossRef] [PubMed]
  8. H.-W. Fink, W. Stocker, and H. Schmid, “Holography with low-energy electrons,” Phys. Rev. Lett. 65, 1204-1206 (1990). [CrossRef] [PubMed]
  9. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45, 836-850 (2006). [CrossRef] [PubMed]
  10. W. Xu, M. J. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microspheres,” Appl. Opt. 41, 5367-5375 (2002). [CrossRef] [PubMed]
  11. W. Xu, M. J. Jericho, H. J. Kreuzer, and I. A. Meinertzhagen, “Tracking particles in four dimensions with in-line holographic microscopy,” Opt. Lett. 28, 164-166 (2003). [CrossRef] [PubMed]
  12. L. Repetto, E. Piano, and C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Commun. 29, 1132-1134 (2004).
  13. L. Repetto, R. Chittofrati, E. Piano, and C. Pontiggia, “Infrared lensless holographic microscope with a vidicon camera for inspection of metallic evaporations on silicon wafers,” Opt. Commun. 251, 44-50 (2005). [CrossRef]
  14. B. Javidi, I. Moon, S. Yeom, and E. Carapezza, “Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography,” Opt. Express 13, 4492-4506 (2005). [CrossRef] [PubMed]
  15. S. Mayo, T. Davis, T. Gureyev, P. Miller, D. Paganin, A. Pogany, A. Stevenson, and S. Wilkins, “X-ray phase contrast microscopy and microtomography,” Opt. Express 11, 2289-2302 (2003). [CrossRef] [PubMed]
  16. D. Gao, S. W. Wilkins, D. J. Parry, T. E. Gureyev, P. R. Miller, and E. Hansen, “X-ray ultramicroscopy using integrated sample cells,” Opt. Express 14, 7889-7894 (2006). [CrossRef] [PubMed]
  17. G. Pedrini, F. Zhang, and W. Osten, “Digital holographic microscopy in the deep (193 nm) ultraviolet,” Appl. Opt. 46, 7829-7835 (2007). [CrossRef] [PubMed]
  18. J. Pomarico, U. Schnars, H.-J. Hartman, and W. Jüptner, “Digital recording and numerical reconstruction of holograms: a new method for displaying light in flight,” Appl. Opt. 34, 8095-8099 (1995). [CrossRef] [PubMed]
  19. G. Pedrini and H. J. Tiziani, “Short-coherence digital microscopy by use of a lensless holographic imaging system,” Appl. Opt. 41, 4489-4496 (2002). [CrossRef] [PubMed]
  20. L. Martínez-León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44, 3977-3984 (2005). [CrossRef] [PubMed]
  21. T. Kozacki and R. Jóźwiki, “Near field hologram registration with partially coherent illumination,” Opt. Commun. 237, 235-242 (2004). [CrossRef]
  22. T. Kozacki and R. Jóźwiki, “Digital reconstruction of a hologram recorded using partially coherent illumination,” Opt. Commun. 252, 188-201 (2005). [CrossRef]
  23. J. Cheng and S. Han, “On x-ray in-line Gabor holography with a partially coherent source,” Opt. Commun. 172, 17-24 (1999). [CrossRef]
  24. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  25. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).
  26. E. Wolf, “New theory of partial coherence in the space-frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343-351 (1982). [CrossRef]
  27. A. Starikov and E. Wolf, “Coherent-mode representation of Gaussian Schell-model sources and their radiation fields,” J. Opt. Soc. Am. 72, 923-928 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited