OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 2468–2475

Effects of the peripheral layers on the optical properties of spherical fish lenses

Yakir L. Gagnon, Bo Söderberg, and Ronald H.H. Kröger  »View Author Affiliations

JOSA A, Vol. 25, Issue 10, pp. 2468-2475 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (336 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We created a computational optical model of spherical fish lenses that takes into account the effects of the peripheral layers, which differ in cellular composition from the bulk of the lens. A constant refractive index, except for the lens capsule, in the outer about 6% of lens radius made it possible to uniquely infer the refractive index gradient in more central layers from a known or desired longitudinal spherical aberration curve using the inverse Abel transform. Since the zone of constant refractive index is wider than necessary to make the solution unique and for optimal optical performance of the lens, we propose that its width be set by the metabolic needs of the lens.

© 2008 Optical Society of America

OCIS Codes
(000.1430) General : Biology and medicine
(110.2760) Imaging systems : Gradient-index lenses
(170.1420) Medical optics and biotechnology : Biology
(080.6755) Geometric optics : Systems with special symmetry
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: January 28, 2008
Revised Manuscript: July 17, 2008
Manuscript Accepted: August 8, 2008
Published: September 17, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

Yakir L. Gagnon, Bo Söderberg, and Ronald H. Kröger, "Effects of the peripheral layers on the optical properties of spherical fish lenses," J. Opt. Soc. Am. A 25, 2468-2475 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. F. Land and D.-E. Nilsson, Animal Eyes, Animal Biology Series (Oxford 2002).
  2. T. Mandelman and J. G. Sivak, “Longitudinal chromatic aberration of the vertebrate eye,” Vision Res. 23, 1555-1560 (1983). [CrossRef] [PubMed]
  3. L. Matthiessen, “Ueber den physikalisch-optischen Bau des Auges der Cetaceen und der Fische,” Pfluegers Arch. 38, 521-528 (1886). [CrossRef]
  4. R. J. Pumphrey, “Concerning vision,” in The Cell and the Organism, J.A.Ramsay and V.B.Wigglesworth, eds. (Cambridge U. Press, 1961), pp. 193-208.
  5. J. G. Sivak and C. A. Luer, “Optical development of the ocular lens of an elasmobranch Raja eglanteria,” Vision Res. 31, 373-382 (1991). [CrossRef] [PubMed]
  6. G. L. Walls, The Vertebrate Eye and Its Adaptive Radiation (Hafner, 1964).
  7. J. C. Maxwell, “Some solutions of problems 2,” Cambridge Dublin Math. J. 8, 188-195 (1854).
  8. L. Matthiessen, “Ueber die Beziehungen, welche zwischen dem Brechungsindex des Kerncentrums der Krystalllinse und den Dimensionen des Auges bestehen,” Pfluegers Arch. 27, 510-523 (1882). [CrossRef]
  9. L. Matthiessen, “X. Beiträge zur Dioptrik der Kristalllinse,” Z. vergleich. Augen. 7, 102-146 (1893).
  10. R. K. Luneburg, Mathematical Theory of Optics (Brown U. Press, 1944).
  11. A. Huggart, “On the form of the iso-indicial surfaces of the human crystalline lens,” Acta Ophthalmol. Scand. 64, 1-126 (1948).
  12. S. Nakao, S. Fujimoto, R. Nagata, and K. Iwata, “Model of refractive index distribution in the rabbit crystalline lens,” J. Opt. Soc. Am. 58, 1125-1130 (1968). [CrossRef] [PubMed]
  13. B. Philipson, “Distribution of protein within the normal rat lens,” Invest. Ophthalmol. Visual Sci. 8, 258-270 (1969).
  14. M. Bando, A. Nakajima, M. Nakagawa, and T. Hiraoka, “Measurement of protein distribution in human lens by micro spectrophotometry,” Exp. Eye Res. 22, 389-392 (1976). [CrossRef] [PubMed]
  15. P. P. Fagerholm, B. Philipson, and B. Lindström, “Normal human lens--the distribution of protein,” Exp. Eye Res. 33, 615-620 (1981). [CrossRef] [PubMed]
  16. M. C. W. Campbell and A. Hughes, “An analytic, gradient index schematic lens and eye for the rat which predicts aberrations for finite pupils,” Vision Res. 21, 1129-1148 (1981). [CrossRef] [PubMed]
  17. M. C. W. Campbell, “Gradient refractive index optics and image quality in the rat eye,” Ph.D thesis (Australian National University, Canberra, 1982).
  18. A. Fletcher, T. Murphy, and A. Young, “Solutions of two optical problems,” Proc. R. Soc. London, Ser. A 223, 216-225 (1954). [CrossRef]
  19. P. L. Chu, “Nondestructive measurement of index profile of an optical-fibre preform,” Electron. Lett. 13, 736-738 (1977). [CrossRef]
  20. K. F. Barrell and C. Pask, “Nondestructive index profile measurement of noncircular optical fibre preforms,” Opt. Commun. 27, 230-234 (1978). [CrossRef]
  21. M. C. W. Campbell, “Measurement of refractive index in an intact crystalline lens,” Vision Res. 24, 409-416 (1984). [CrossRef] [PubMed]
  22. R. H. H. Kröger, M. C. W. Campbell, R. Munger, and R. D. Fernald, “Refractive index distribution and spherical aberration in the crystalline lens of the African cichlid fish Haplochromis burtoni,” Vision Res. 34, 1815-1822 (1994). [CrossRef] [PubMed]
  23. R. D. Fernald and S. E. Wright, “Maintenance of optical quality during crystalline lens growth,” Nature 301, 618-620 (1983). [CrossRef] [PubMed]
  24. J. G. Sivak, “Optical properties of a cephalopod eye the short finned squid Illex illecebrosus,” J. Comp. Physiol., A 147, 323-328 (1982). [CrossRef]
  25. J. G. Sivak, “Optical characteristics of the eye of the flounder,” J. Comp. Physiol., A 146, 345-350 (1982). [CrossRef]
  26. J. G. Sivak and R. O. Kreuzer, “Spherical aberration of the crystalline lens,” Vision Res. 23, 59-70 (1983). [CrossRef] [PubMed]
  27. D. Axelrod, D. Lerner, and P. J. Sands, “Refractive index within the lens of a goldfish eye determined from the paths of thin laser beams,” Vision Res. 28, 57-66 (1988). [CrossRef] [PubMed]
  28. B. K. Pierscionek, “Nondestructive method of constructing 3-dimensional gradient index models for crystalline lenses. 1. Theory and experiment,” Am. J. Optom. Physiol. Opt. 65, 481-491 (1988). [PubMed]
  29. B. K. Pierscionek, “The refractive index along the optic axis of the bovine lens,” Eye 9, 776-782 (1995). [CrossRef] [PubMed]
  30. E. Acosta, D. Vazquez, L. Garner, and G. Smith, “Tomographic method for measurement of the gradient refractive index of the crystalline lens. I. the spherical fish lens,” J. Opt. Soc. Am. A 22, 424-433 (2005). [CrossRef]
  31. L. F. Garner, G. Smith, S. Yao, and R. C. Augusteyn, “Gradient refractive index of the crystalline lens of the Black Oreo Dory (Allocyttus niger): comparison of magnetic resonance imaging (MRI) and laser ray-trace methods,” Vision Res. 41, 973-979 (2001). [CrossRef] [PubMed]
  32. D. Vazquez, E. Acosta, G. Smith, and L. Garner, “Tomographic method for measurement of the gradient refractive index of the crystalline lens. II. The rotationally symmetrical lens,” J. Opt. Soc. Am. A 23, 2551-2565 (2006). [CrossRef]
  33. Y. Verma, K. D. Rao, M. K. Suresh, H. S. Patel, and P. K. Gupta, “Measurement of gradient refractive index profile of crystalline lens of fisheye in vivo using optical coherence tomography,” Appl. Phys. B: Photophys. Laser Chem. 87, 607-610 (2007). [CrossRef]
  34. F. W. Campbell and R. W. Gubish, “The effect of chromatic aberration on visual acuity,” J. Physiol. (London) 186, 558-578 (1967).
  35. R. H. H. Kröger and M. C. W. Campbell, “Dispersion and longitudinal chromatic aberration of the crystalline lens of the African cichlid fish Haplochromis burtoni,” J. Opt. Soc. Am. A 13, 2341--2347 (1996). [CrossRef]
  36. S. Sroczyński, “Spherical aberration of crystalline lens in the roach Rutilus rutilus,” J. Comp. Physiol., A 121, 135-144 (1977). [CrossRef]
  37. S. Sroczyński, “Die sphärische Aberration der Augenlinse der Regenbogenforelle (Salmo gairdneri, Rich.),” Zool. Jahrb. Physiol. 79, 204-212 (1975).
  38. S. Sroczyński, “Die sphärische Aberration der Augenlinse des Hechts (Esox lucius L.),” Zool. Jahrb. Physiol. 79, 547-558 (1975).
  39. S. Sroczyński, “Die chromatische Aberration der Augenlinse der Bachforelle (Salmo trutta fario, L.),” Zool. Jahrb. Physiol. 82, 113-133 (1978).
  40. S. Sroczyński, “Das optische System des Auges des Flussbarsches (Perca fluviatilis, L.),” Zool. Jahrb. Physiol. 83, 224-252 (1979).
  41. J. K. Bowmaker and Y. W. Kunz, “UV receptors tetrachromatic color vision and retinal mosaics in the brown trout Salmo trutta age-dependent changes,” Vision Res. 27, 2101-2108 (1987). [CrossRef] [PubMed]
  42. J. K. Bowmaker, A. Thorpe, and R. H. Douglas, “UV-sensitive cones in the goldfish,” Vision Res. 31, 349-352 (1991). [CrossRef] [PubMed]
  43. R. H. H. Kröger, M. C. W. Campbell, R. D. Fernald, and H.-J. Wagner, “Multifocal lenses compensate for chromatic defocus in vertebrate eyes,” J. Comp. Physiol., A 184, 361-369 (1999). [CrossRef]
  44. P. E. Malkki and R. H. H. Kröger, “Visualization of chromatic correction of fish lenses by multiple focal lengths,” J. Opt. A, Pure Appl. Opt. 7, 691-700 (2005). [CrossRef]
  45. B. Karpestam, J. Gustafsson, N. Shashar, G. Katzir, and R. H. H. Kröger, “Multifocal lenses in coral reef fishes,” J. Exp. Biol. 210, 2923-2931 (2007). [CrossRef] [PubMed]
  46. T. Malmström and R. H. H. Kröger, “Pupil shapes and lens optics in the eyes of terrestrial vertebrates,” J. Exp. Biol. 209, 18-25 (2006). [CrossRef]
  47. J. R. Kuszak, R. K. Zoltoski, and C. Sivertson, “Fibre cell organization in crystalline lenses,” Exp. Eye Res. 78, 673-687 (2004). [CrossRef] [PubMed]
  48. V. Bantseev, K. L. Herbert, J. R. Trevithick, and J. G. Sivak, “Mitochondria of rat lenses: distribution near and at the sutures,” Invest. Ophthalmol. Visual Sci. 40, S881 (1999).
  49. S. Bassnett and D. C. Beebe, “Coincident loss of mitochondria and nuclei during lens fiber cell differentiation,” Dev. Dyn. 194, 85-93 (1992). [CrossRef] [PubMed]
  50. V. Bantseev, K. L. Moran, D. G. Dixon, J. R. Trevithick, and J. G. Sivak, “Optical properties, mitochondria, and sutures of lenses of fishes: a comparative study of nine species,” Can. J. Zool. 82, 86-93 (2004). [CrossRef]
  51. M. C. Campbell, E. M. Harrison, and P. Simonet, “Psychophysical measurement of the blur on the retina due to optical aberrations of the eye,” Vision Res. 30, 1587-1602 (1990). [CrossRef] [PubMed]
  52. W. S. Jagger, “The optics of the spherical fish lens,” Vision Res. 32, 1271-1284 (1992). [CrossRef] [PubMed]
  53. R. H. H. Kröger, M. C. W. Campbell, and R. D. Fernald, “The development of the crystalline lens is sensitive to visual input in the African cichlid fish, Haplochromis burtoni,” Vision Res. 41, 549-559 (2001). [CrossRef] [PubMed]
  54. P. Schiebener, J. Straub, L. S. J. M. H., and J. S. Gallagher, “Refractive index of water and steam as function of wavelength, temperature and density,” J. Phys. Chem. 19, 677 (1990).
  55. D.-E. Nilsson, M. Andersson, E. Hallberg, and P. McIntyre, “A micro interferometric method for analysis of rotation symmetric refractive index gradients in intact objects,” J. Microsc. 132, 21-30 (1983). [CrossRef]
  56. D.-E. Nilsson, L. Gislen, M. M. Coates, C. Skogh, and A. Garm, “Advanced optics in a jellyfish eye,” Nature 435, 201-205 (2005). [CrossRef] [PubMed]
  57. E. S. Reynolds, “The use of lead citrate at high pH as an electron-opaque stain in electron microscopy,” J. Cell Biol. 17, 208-212 (1963). [CrossRef] [PubMed]
  58. M. C. W. Campbell and P. J. Sands, “Optical quality during crystalline lens growth,” Nature 312, 291-292 (1984). [CrossRef] [PubMed]
  59. B. K. Pierscionek, “Refractive index of the human lens surface measured with an optic fibre sensor,” Ophthalmic Res. 26, 32-35 (1994). [CrossRef] [PubMed]
  60. B. K. Pierscionek and R. C. Augusteyn, “The refractive index and protein distribution in the blue eye trevally lens,” J. Am. Optom. Assoc. 66, 739-743 (1995). [PubMed]
  61. J. M. Schartau, B. Sjögreen, Y. L. Gagnon, and R. H. H. Kröger, “Optical plasticity in fish crystalline lenses,” submitted to Curr. Biol. (posted July 25, 2008).
  62. R. Barer, “Refractometry and interferometry of living cells,” J. Opt. Soc. Am. 47, 54-556 (1957). [CrossRef]
  63. L. Matthiessen, “Untersuchungen über Aplanatismus und die Periskopie der Kristalllinsen in den Augen der Fische,” Pfluegers Arch. 21, 287-307 (1880). [CrossRef]
  64. B. K. Pierscionek, “Refractive index of decapsulated bovine lens surfaces measured with a reflectometric sensor,” Vision Res. 34, 1927-1933 (1994). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited