OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 2535–2548

Multilevel Green’s function interpolation method for scattering from composite metallic and dielectric objects

Yan Shi, Hao Gang Wang, Long Li, and Chi Hou Chan  »View Author Affiliations


JOSA A, Vol. 25, Issue 10, pp. 2535-2548 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002535


View Full Text Article

Enhanced HTML    Acrobat PDF (1353 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A multilevel Green’s function interpolation method based on two kinds of multilevel partitioning schemes—the quasi-2D and the hybrid partitioning scheme—is proposed for analyzing electromagnetic scattering from objects comprising both conducting and dielectric parts. The problem is formulated using the surface integral equation for homogeneous dielectric and conducting bodies. A quasi-2D multilevel partitioning scheme is devised to improve the efficiency of the Green’s function interpolation. In contrast to previous multilevel partitioning schemes, noncubic groups are introduced to discretize the whole EM structure in this quasi-2D multilevel partitioning scheme. Based on the detailed analysis of the dimension of the group in this partitioning scheme, a hybrid quasi-2D/3D multilevel partitioning scheme is proposed to effectively handle objects with fine local structures. Selection criteria for some key parameters relating to the interpolation technique are given. The proposed algorithm is ideal for the solution of problems involving objects such as missiles, microstrip antenna arrays, photonic bandgap structures, etc. Numerical examples are presented to show that CPU time is between O ( N ) and O ( N log N ) while the computer memory requirement is O ( N ) .

© 2008 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.3870) General : Mathematics
(000.4430) General : Numerical approximation and analysis
(290.5890) Scattering : Scattering, stimulated

ToC Category:
Scattering

History
Original Manuscript: April 25, 2008
Manuscript Accepted: June 30, 2008
Published: September 22, 2008

Citation
Yan Shi, Hao Gang Wang, Long Li, and Chi Hou Chan, "Multilevel Green's function interpolation method for scattering from composite metallic and dielectric objects," J. Opt. Soc. Am. A 25, 2535-2548 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-10-2535


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. F. Harrington, Field Computation by Moment Methods (IEEE, 1993). [CrossRef]
  2. J. M. Jin, The Finite Element Method in Electromagnetics, 2nd ed. (Wiley, 1993).
  3. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  4. X. Q. Sheng, J. M. Jin, J. M. Song, W. C. Chew, and C. C. Lu, “Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies,” IEEE Trans. Antennas Propag. 46, 1718-1726 (1998). [CrossRef]
  5. B. M. Kolundzija, “Electromagnetic modeling of composite metallic and dielectric structures,” IEEE Trans. Microwave Theory Tech. 47, 1021-1032 (1999). [CrossRef]
  6. K. C. Donepudi, J. M. Jin, and W. C. Chew, “A higher order multilevel fast multipole algorithm for scattering from mixed conducting/dielectric bodies,” IEEE Trans. Antennas Propag. 51, 2814-2821 (2003). [CrossRef]
  7. P. Y. Oijala, M. Taskinen, and J. Sarvas, “Surface integral equation method for general composite metallic and dielectric structures with junctions,” Prog. Electromagn. Res. PIER 52, 81-108 (2005). [CrossRef]
  8. B. M. Kolundzija and A. R. Djordjevic, Electromagnetic Modeling of Composite Metallic and Dielectric Structure (Artech House, 2002).
  9. V. Rokhlin, “Rapid solution of integral equations of classic potential theory,” J. Comput. Phys. 60, 187-207 (1985). [CrossRef]
  10. L. Greengard and V. Rokhlin, “A fast algorithm for particle simulations,” J. Comput. Phys. 73, 325-348 (1987). [CrossRef]
  11. E. Darve, “The fast multipole method: numerical implementation,” J. Comput. Phys. 160, 195-240 (2000). [CrossRef]
  12. C. C. Lu and W. C. Chew, “A multilevel algorithm for solving a boundary integral equation of wave scattering,” Microwave Opt. Technol. Lett. 7, 456-461 (1994). [CrossRef]
  13. J. M. Song, C. C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects,” IEEE Trans. Antennas Propag. 45, 1488-1493 (1997). [CrossRef]
  14. W. C. Chew, J. M. Jin, E. Michielssen, and J. M. Song, Fast and Efficient Algorithms in Computational Electromagnetics (Artech House, 2001).
  15. N. Yarvin and V. Rokhlin, “A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics,” J. Comput. Phys. 147, 594-609 (1998). [CrossRef]
  16. E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AIM: adaptive integral method for solving large-scale electromagnetic scattering and radiation problems,” Radio Sci. 31, 1225-1251 (1996). [CrossRef]
  17. F. Ling, C. F. Wang, and J. M. Jin, “An efficient algorithm for analyzing large-scale microstrip structures using adaptive integral method combined with discrete complex image method,” IEEE Trans. Microwave Theory Tech. 48, 832-837 (2000). [CrossRef]
  18. C. H. Chan, C. M. Lin, L. Tsang, and Y. F. Leung, “A sparse-matrix/canonical grid method for analyzing microstrip structures,” IEICE Trans. Electron. E80-C, 1354-1359 (1997).
  19. S. Q. Li, Y. X. Yu, C. H. Chan, K. F. Chan, and L. Tsang, “A sparse-matrix/canonical grid method for analyzing densely packed interconnects,” IEEE Trans. Microwave Theory Tech. 49, 1221-1228 (2001). [CrossRef]
  20. J. R. Phillips and J. K. White, “A precorrected-FFT method for electrostatic analysis of complicated 3-D structures,” IEEE Trans. Comput.-Aided Des. 16, 1059-1072 (1997). [CrossRef]
  21. X. C. Nie, N. Yuan, L. W. Li, Y. B. Gan, and T. S. Yeo, “A fast volume-surface integral equation solver for scattering from composite conducting-dielectric objects,” IEEE Trans. Antennas Propag. 52, 818-824 (2005).
  22. H. G. Wang, C. H. Chan, and L. Tsang, “A new multilevel Green's function interpolation method for large-scale low-frequency EM simulations,” IEEE Trans. Comput.-Aided Des. 24, 1427-1443 (2005). [CrossRef]
  23. H. G. Wang and C. H. Chan, “The implementation of multilevel Green's function interpolation method for full-wave electromagnetic problems,” IEEE Trans. Antennas Propag. 55, 1348-1358 (2007). [CrossRef]
  24. A. Brandt, “Multilevel computations of integral transforms and particle interactions with oscillatory kernels,” Comput. Phys. Commun. 65, 24-38 (1991). [CrossRef]
  25. L. Li, H. G. Wang, and C. H. Chan, “A novel interpolation scheme for full-wave electromagnetic simulations,” presented at the International Symposium on Antennas and Propagation (ISAP), Singapore, 2006.
  26. L. Li, H. G. Wang, and C. H. Chan, “An improved multilevel Green's function interpolation method with adaptive phase compensation for large-scale full-wave EM simulation,” IEEE Trans. Antennas Propag. 56, 1381-1393 (2008). [CrossRef]
  27. R. D. Graglia, D. R. Wilton, and A. F. Peterson, “Higher order interpolatory vector bases for computational electromagnetics,” IEEE Trans. Antennas Propag. 45, 329-342 (1997). [CrossRef]
  28. Y. Saad and M. Schultz, “GMRES: A generalized minimal residual algorithm for solving non symmetric linear systems,” SIAM (Soc. Ind. Appl. Math.) J. Sci. Stat. Comput. 7, 856-869 (1986). [CrossRef]
  29. R. A. Horn and C. R. Johnson, Topics in Matrix Analysis (Cambridge U. Press, 1991). [CrossRef]
  30. Y. A. Liu and W. C. Chew, “Stability of surface integral equation for left-handed materials,” IET Proc. Microwaves, Antennas Propag. 1, 84-89 (2007). [CrossRef]
  31. D. L. Smith, L. N. M. Mitschang, and D. W. Forester, “Surface integral equation formulations for left-handed materials,” Prog. Electromagn. Res. PIER 51, 27-48 (2005). [CrossRef]
  32. K. M. Ho, C. T. Chan, C. M. Soukoulis, R. Biswas, and M. Sigalas, “Photonic band gaps in three dimensions: new layer-by-layer periodic structures,” Solid State Commun. 89, 413-416 (1994). [CrossRef]
  33. E. Ozbay, A. Abeyta, G. Tuttle, M. C. Tringides, R. Biswas, M. Sigalas, C. M. Soukoulis, C. T. Chan, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods,” Phys. Rev. B 50, 1945-1948 (1994). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited