OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 10 — Oct. 1, 2008
  • pp: 2571–2581

Monte Carlo modeling of spatial coherence: free-space diffraction

David G. Fischer, Scott A. Prahl, and Donald D. Duncan  »View Author Affiliations

JOSA A, Vol. 25, Issue 10, pp. 2571-2581 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (938 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a Monte Carlo method for propagating partially coherent fields through complex deterministic optical systems. A Gaussian copula is used to synthesize a random source with an arbitrary spatial coherence function. Physical optics and Monte Carlo predictions of the first- and second-order statistics of the field are shown for coherent and partially coherent sources for free-space propagation, imaging using a binary Fresnel zone plate, and propagation through a limiting aperture. Excellent agreement between the physical optics and Monte Carlo predictions is demonstrated in all cases. Convergence criteria are presented for judging the quality of the Monte Carlo predictions.

© 2008 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.5620) Coherence and statistical optics : Radiative transfer
(030.6600) Coherence and statistical optics : Statistical optics
(110.4980) Imaging systems : Partial coherence in imaging
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Coherence and Statistical Optics

Original Manuscript: May 9, 2008
Manuscript Accepted: July 21, 2008
Published: September 23, 2008

Virtual Issues
Vol. 3, Iss. 12 Virtual Journal for Biomedical Optics

David G. Fischer, Scott A. Prahl, and Donald D. Duncan, "Monte Carlo modeling of spatial coherence: free-space diffraction," J. Opt. Soc. Am. A 25, 2571-2581 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).
  2. J. W. Goodman, Statistical Optics (Wiley, 1985).
  3. D. G. Fischer and E. Wolf, “Inverse problems with quasi-homogeneous random media,” J. Opt. Soc. Am. A 11, 1128-1135 (1994). [CrossRef]
  4. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Press, 1998).
  5. D. G. Fischer and T. D. Visser, “Spatial correlation properties of focused partially coherent light,” J. Opt. Soc. Am. A 21, 2097-2102 (2004). [CrossRef]
  6. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10, 824-830 (1983). [CrossRef] [PubMed]
  7. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” in SPIE Proceedings of Dosimetry of Laser Radiation in Medicine and Biology, G.J.Müller and D.H.Sliney, eds., Institute Series 5 (SPIE Press, 1989), pp. 102-111.
  8. L. Tsang, J. A. Kong, K.H. Ding, and C. O. Ao, Scattering of Electromagnetic Waves: Numerical Simulations (Wiley, 2001). [CrossRef]
  9. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE, 1997).
  10. L. Tsang, J. A. Kong, and K.-H. Ding, Scattering of Electromagnetic Waves: Theories and Applications (Wiley, 2000). [CrossRef]
  11. G. Xiong, P. Xue, J. Wu, Q. Miao, R. Wang, and L. Ji, “Particle-fixed Monte Carlo model for optical coherence tomography,” Opt. Express 13, 2182-2195 (2005). [CrossRef] [PubMed]
  12. A. Tycho, T. M. Jorgensen, H. T. Yura, and P. E. Andersen, “Derivation of a Monte Carlo method for modeling heterodyne detection in optical coherence tomography systems,” Appl. Opt. 41, 6676-6691 (2002). [CrossRef] [PubMed]
  13. B. Cairns, “An investigation of radiative transfer and multiple scattering,” Ph.D. thesis (University of Rochester, 1992). (Available from UMI Dissertation Information Service, 300 N. Zeeb Road, Ann Arbor, Michigan 48106).
  14. C. Mujat and A. Dogariu, “Statistics of partially coherent beams: a numerical analysis,” J. Opt. Soc. Am. A 21, 1000-1003 (2004). [CrossRef]
  15. R. B. Nelson, An Introduction to Copulas (Springer-Verlag, 1999).
  16. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th ed. (McGraw-Hill, 2002).
  17. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J.C.Dainty, ed. (Springer-Verlag, 1975), pp. 9-75. [CrossRef]
  18. D. D. Duncan and S. J. Kirkpatrick, “The copula: a tool for simulating dynamic speckle,” J. Opt. Soc. Am. A 25, 231-237 (2008). [CrossRef]
  19. A. Oulamara, G. Tribillon, and J. Duvernoy, “Biological activity measurement on botanical specimen surfaces using a temporal decorrelation effect of laser speckle,” J. Mod. Opt. 36, 165-179 (1989). [CrossRef]
  20. J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction, and Focusing of Light, Sound, and Water Waves (Hilger, 1986).
  21. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).
  22. N. Metropolis and S. Ulam, “The Monte Carlo method,” J. Am. Stat. Assoc. 44, 335-341 (1949). [CrossRef] [PubMed]
  23. M. Keijzer, S. L. Jacques, S. A. Prahl, and A. J. Welch, “Light distributions in artery tissue: Monte Carlo simulations for finite-diameter laser beams,” Lasers Surg. Med. 9, 148-154 (1989). [CrossRef] [PubMed]
  24. L. Wang, S. L. Jacques, and L. Zheng, “MCML-Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995). [CrossRef] [PubMed]
  25. T. P. Moffitt and S. A. Prahl, “Sized-fiber reflectometry for measuring local optical properties,” IEEE J. Sel. Top. Quantum Electron. 7, 952-958 (2001). [CrossRef]
  26. P. R. Bargo, S. A. Prahl, and S. L. Jacques, “Optical properties effects upon the collection efficiency of optical fibers in different probe configurations,” IEEE J. Sel. Top. Quantum Electron. 9, 314-321 (2003). [CrossRef]
  27. S. A. Carp, S. A. Prahl, and V. Venugopalan, “Radiative transport in the delta-P1 approximation: Accuracy of fluence rate and optical penetration depth predictions in turbid semi-infinite media,” J. Biomed. Opt. 9, 632-647 (2004). [CrossRef] [PubMed]
  28. B. D. Cameron, M. J. Rakovic, M. Mehrubeoglu, G. W. Kattawar, S. Rastegar, L. V. Wang, and G. Coté, “Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium,” Opt. Lett. 23, 485-487 (1998). [CrossRef]
  29. S. Bartel and A. H. Hielscher, “Monte Carlo simulations of the diffuse backscattering Mueller matrix for highly scattering media,” Appl. Opt. 39, 1580-1588 (2000). [CrossRef]
  30. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 26, 6530-6539 (2004). [CrossRef]
  31. D. Côté and I. A. Vitkin, “Robust concentration determination of optically active molecules in turbid media with validated three-dimensional polarization sensitive Monte Carlo calculations,” Opt. Express 13, 148-163 (2005). [CrossRef] [PubMed]
  32. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part I,” Opt. Express 13, 4420-4438 (2005). [CrossRef] [PubMed]
  33. J. C. Ramella-Roman, S. A. Prahl, and S. L. Jacques, “Three Monte Carlo programs of polarized light transport into scattering media: part II,” Opt. Express 13, 10392-10405 (2005). [CrossRef] [PubMed]
  34. D. J. Smithies, T. Lindmo, Z. Chen, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 3025-3044 (1998). [CrossRef] [PubMed]
  35. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307-2320 (1999). [CrossRef] [PubMed]
  36. Q. Lu, X. Gan, M. Gu, and Q. Luo, “Monte Carlo modeling of optical coherence tomography imaging through turbid media,” Appl. Opt. 43, 1628-1637 (2004). [CrossRef] [PubMed]
  37. M. Y. Kirillin, I. V. Meglinskii, and A. V. Priezzhev, “Effect of photons of different scattering orders on the formation of a signal in optical low-coherence tomography of highly scattering media,” Quantum Electron. 36, 247-252 (2006). [CrossRef]
  38. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
  39. G. Gbur and E. Wolf, “Spreading of partially coherent beams in random media,” J. Opt. Soc. Am. A 19, 1592-1598 (2002). [CrossRef]
  40. H. Roychowdhury, S. A. Ponomarenko, and E. Wolf, “Change in the polarization of partially coherent electromagnetic beams propagating through the turbulent atmosphere,” J. Mod. Opt. 52, 1611-1618 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited