OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 11 — Nov. 1, 2008
  • pp: 2680–2692

Analysis of guided-resonance-based polarization beam splitting in photonic crystal slabs

Onur Kilic, Shanhui Fan, and Olav Solgaard  »View Author Affiliations


JOSA A, Vol. 25, Issue 11, pp. 2680-2692 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002680


View Full Text Article

Enhanced HTML    Acrobat PDF (1013 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an analysis of the phase and amplitude responses of guided resonances in a photonic crystal slab. Through this analysis, we obtain the general rules and conditions under which a photonic crystal slab can be employed as a general elliptical polarization beam splitter, separating an incoming beam equally into its two orthogonal constituents, so that half the power is reflected in one polarization state, and half the power is transmitted in the other state. We show that at normal incidence a photonic crystal slab acts as a dual quarter-wave retarder in which the fast and slow axes are switched for reflection and transmission. We also analyze the case where such a structure operates at oblique incidences. As a result we show that the effective dielectric constant of the photonic crystal slab imposes the Brewster angle as a boundary, separating two ranges of angles with different mechanisms of polarization beam splitting. We show that the diattenuation can be tuned from zero to one to make the structure a circular or linear polarization beam splitter. We verify our analytical analysis through finite-difference time-domain simulations and experimental measurements at infrared wavelengths.

© 2008 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(230.5750) Optical devices : Resonators
(230.5298) Optical devices : Photonic crystals

ToC Category:
Optical Devices

History
Original Manuscript: May 23, 2008
Manuscript Accepted: August 21, 2008
Published: October 10, 2008

Citation
Onur Kilic, Shanhui Fan, and Olav Solgaard, "Analysis of guided-resonance-based polarization beam splitting in photonic crystal slabs," J. Opt. Soc. Am. A 25, 2680-2692 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-11-2680


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. B. Pittman, B. C. Jacobs, and J. D. Franson, “Probabilistic quantum logic operations using polarizing beam splitters,” Phys. Rev. A 64, 062311 (2001). [CrossRef]
  2. P. Kok, C. P. Williams, and J. P. Dowling, “Construction of a quantum repeater with linear optics,” Phys. Rev. A 68, 022301 (2003). [CrossRef]
  3. J. L. Pezzaniti and R. A. Chipman, “Angular dependence of polarizing beam splitter cubes,” Appl. Opt. 33, 1916-1929 (1994). [CrossRef]
  4. D. Yi, Y. Yan, H. Liu, S. Lu, and G. Jin, “Broadband polarizing beam splitter based on the form birefringence of a subwavelength grating in the quasi-static domain,” Opt. Lett. 29, 754-756 (2004). [CrossRef] [PubMed]
  5. D. Dias, S. Stankovic, H. Haidner, L. L. Wang, T. Tschudi, M. Ferstl, and R. Steingrüber, “High-frequency gratings for applications to DVD pickup systems,” J. Opt. A, Pure Appl. Opt. 3, 164-173 (2001). [CrossRef]
  6. M. C. Gupta and S. T. Peng, “Multifunction grating for signal detection of optical disk,” Proc. SPIE 1499, 303-306 (1991). [CrossRef]
  7. A. G. Lopez and H. G. Craighead, “Wave-plate polarizing beam splitter based on a form-birefringent multilayer grating,” Opt. Lett. 23, 1627-1629 (1998). [CrossRef]
  8. M. Schmitz, R. Brauer, and O. Bryngdahl, “Gratings in the resonance domain as polarizing beam splitters,” Opt. Lett. 20, 1830-1831 (1995). [CrossRef] [PubMed]
  9. R. C. Tyan, P. C. Sun, and Y. Fainman, “Polarizing beam splitters constructed of form-birefringent multilayer gratings,” Proc. SPIE 2689, 82-89 (1996). [CrossRef]
  10. R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, “Polarizing beam splitter based on anisotropic spectral reflectivity characteristics of form-birefringent multilayer gratings,” Opt. Lett. 21, 761-763 (1996). [CrossRef] [PubMed]
  11. G. R. Bird and M. Parrish, Jr., “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886-891 (1960). [CrossRef]
  12. R. Magnusson and S. S. Wang, “New principle for optical filters,” Appl. Phys. Lett. 61, 1022-1024 (1992). [CrossRef]
  13. J. R. Wendt, G. A. Vawter, R. E. Smith, and M. E. Warren, “Subwavelength, binary lenses at infrared wavelengths,” J. Vac. Sci. Technol. B 15, 2946-2949 (1997). [CrossRef]
  14. R. C. Enger and S. K. Case, “Optical elements with ultrahigh spatial-frequency surface corrugations,” Appl. Opt. 22, 3220-3228 (1983). [CrossRef] [PubMed]
  15. L. H. Cescato, E. Gluch, and N. Streibl, “Holographic quarter-wave plate,” Appl. Opt. 29, 3286-3290 (1990). [CrossRef] [PubMed]
  16. D. C. Flanders, “Submicrometer periodicity gratings as artificial anisotropic dielectrics,” Appl. Phys. Lett. 42, 492-494 (1983). [CrossRef]
  17. H. Kikuta, Y. Ohira, and K. Iwata, “Achromatic quarter-wave plates using the dispersion of form birefringence,” Appl. Opt. 36, 1566-1572 (1997). [CrossRef] [PubMed]
  18. G. P. Nordin and P. C. Deguzman, “Broadband form birefringent quarter-wave plate for the mid-infrared wavelength region,” Opt. Express 5, 163-168 (1999). [CrossRef] [PubMed]
  19. S. D. Jacobs, K. A. Cerqua, K. L. Marshall, A. Schmid, M. J. Guardalben, and K. J. Skerrett, “Liquid-crystal laser optics: design, fabrication, and performance,” J. Opt. Soc. Am. B 5, 1962-1979 (1988). [CrossRef]
  20. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, “Polarization beam splitters using polarization diffraction gratings,” Opt. Lett. 26, 587-589 (2001). [CrossRef]
  21. R. M. A. Azzam and F. A. Mahmoud, “Symmetrically coated pellicle beam splitters for dual quarter-wave retardation in reflection and transmission,” Appl. Opt. 41, 235-238 (2002). [CrossRef] [PubMed]
  22. R. M. A. Azzam and A. De, “Circular polarization beam splitter that uses frustrated total internal reflection by an embedded symmetric achiral multilayer coating,” Opt. Lett. 28, 355-357 (2003). [CrossRef] [PubMed]
  23. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Photonic crystal polarizers and polarizing beam splitters,” J. Appl. Phys. 93, 9429-9431 (2003). [CrossRef]
  24. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Birefringence in two-dimensional bulk photonic crystals applied to the construction of quarter waveplates,” Opt. Express 11, 125-133 (2003). [CrossRef] [PubMed]
  25. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, “Angular and polarization properties of a photonic crystal slab mirror,” Opt. Express 12, 1575-1582 (2004). [CrossRef] [PubMed]
  26. V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. D. L. Rue, “Resonant coupling of near-infrared radiation to photonic band structure waveguides,” J. Lightwave Technol. 17, 2050-2057 (1999). [CrossRef]
  27. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Technol. 17, 2096-2112 (1999). [CrossRef]
  28. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a 2D photonic crystal in a semiconductor LED,” Appl. Phys. Lett. 78, 563-565 (2001). [CrossRef]
  29. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65, 235112 (2002). [CrossRef]
  30. S. Fan, W. Suh, and J. D. Joannopoulos, “Temporal coupled-mode theory for the Fano resonance in optical resonators,” J. Opt. Soc. Am. A 20, 569-572 (2003). [CrossRef]
  31. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. Mackenzie, and T. Tiedje, “Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice,” Appl. Phys. Lett. 70, 1438-1440 (1997). [CrossRef]
  32. M. Meier, A. Mekis, A. Dodabalapur, A. A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74, 7-9 (1999). [CrossRef]
  33. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, “Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,” Science 293, 1123-1125 (2001). [CrossRef] [PubMed]
  34. H. Y. Ryu, Y. H. Lee, R. L. Sellin, and D. Bimberg, “Over 30-fold enhancement of light extraction from free-standing photonic crystal slabs with InGaAs quantum dots at low temperature,” Appl. Phys. Lett. 79, 3573-3575 (2001). [CrossRef]
  35. P. Yeh, Optical Waves in Layered Media (Wiley, 1988).
  36. K. Sakoda, Optical Properties of Photonic Crystals (Springer-Verlag, 2001).
  37. For a complex number z=∣z∣ejΦ, the phase will be Φ=arg(z). We restrict the phase to the principal value, so that −π<arg(z)⩽π. The argument of a complex number has the properties arg(z1)+arg(z2)=arg(z1z2), and arg(z1)−arg(z2)=arg(z1/z2). The argument of a real number arg(R) will be 0 and π for R⩾0 and R<0, respectively.
  38. E. Hecht, Optics (Addison-Wesley, 1998).
  39. F. Gires and P. Tournois, “Interféromètre utilisable pour la compression d'impulsions lumineuses modulées en fréquence,” C. R. Acad. Sci. Paris 258, 6112-6115 (1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited