OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 11 — Nov. 1, 2008
  • pp: 2710–2720

State of polarization of a stochastic electromagnetic beam in an optical resonator

Olga Korotkova, Min Yao, Yangjian Cai, Halil T. Eyyuboğlu, and Yahya Baykal  »View Author Affiliations


JOSA A, Vol. 25, Issue 11, pp. 2710-2720 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002710


View Full Text Article

Enhanced HTML    Acrobat PDF (1774 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

On the basis of the unified theory of coherence and polarization, we investigate the behavior of the state of polarization of a stochastic electromagnetic beam in a Gaussian cavity. Formulations both in terms of Stokes parameters and in terms of polarization ellipse are given. We show that the state of polarization stabilizes, except in the case of a lossless cavity, after several passages between the mirrors, exhibiting monotonic or oscillatory behavior depending on the parameters of the resonator. We also find that an initially (spatially) uniformly polarized beam remains nonuniformly polarized even for a large number of passages between the mirrors of the cavity.

© 2008 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

History
Original Manuscript: May 22, 2008
Revised Manuscript: August 18, 2008
Manuscript Accepted: August 26, 2008
Published: October 15, 2008

Citation
Olga Korotkova, Min Yao, Yangjian Cai, Halil T. Eyyuboğlu, and Yahya Baykal, "State of polarization of a stochastic electromagnetic beam in an optical resonator," J. Opt. Soc. Am. A 25, 2710-2720 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-11-2710


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. G. Fox and T. Li, “Resonate modes in a maser interferometer,” Bell Syst. Tech. J. 40, 453-488 (1961).
  2. G. D. Boyd and J. P. Gordon, “Confocal multimode resonator for millimeter through optical wavelength masers,” Bell Syst. Tech. J. 40, 489-508 (1961).
  3. E. Wolf, “Spatial coherence of resonant modes in a maser interferometer,” Phys. Lett. 3, 166-168 (1963). [CrossRef]
  4. E. Wolf and G. S. Agarwal, “Coherence theory of laser resonator modes,” J. Opt. Soc. Am. A 1, 541-546 (1984). [CrossRef]
  5. F. Gori, “Propagation of the mutual intensity through a periodic structure,” Atti Fond. Giorgio Ronchi 35, 434-447 (1980).
  6. P. DeSantis, A. Mascello, C. Palma, and M. R. Perrone, “Coherence growth of laser radiation in Gaussian cavities,” IEEE J. Quantum Electron. 32, 802-812 (1996). [CrossRef]
  7. C. Palma, G. Cardone, and G. Cincotti, “Spectral changes in Gaussian-cavity lasers,” IEEE J. Quantum Electron. 34, 1082-1088 (1998). [CrossRef]
  8. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge U. Press, 2007).
  9. F. Gori, M. Santarsiero, G. Piquero, R. Borghi, A. Mondello, and R. Simon, “Partially polarized Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt. 3, 1-9 (2001). [CrossRef]
  10. O. Korotkova, M. Salem, and E. Wolf, “The far-zone behavior of the degree of polarization of partially coherent beams propagating through atmospheric turbulence,” Opt. Commun. 233, 225-230 (2004). [CrossRef]
  11. O. Korotkova and E. Wolf, “Effects of linear non-image forming devices on coherence and polarization properties of random electromagnetic beams. Part I. General theory,” J. Mod. Opt. 52, 2659-2671 (2005). [CrossRef]
  12. W. Gao, “Changes of polarization of light beams on propagation through tissue,” Opt. Commun. 260, 749-754 (2006). [CrossRef]
  13. X. Du, D. Zhao, and O. Korotkova, “Changes in the degree of polarization of a random electromagnetic beam propagating through an apertured optical system,” Phys. Lett. A 372, 4135-4140 (2008). [CrossRef]
  14. E. Wolf, “Coherence and polarization properties of electromagnetic laser modes,” Opt. Commun. 265, 60-62 (2006). [CrossRef]
  15. T. Saastamoinen, J. Turunen, J. Tervo, T. Setala, and A. T. Friberg, “Electromagnetic coherence theory of laser resonator modes,” J. Opt. Soc. Am. A 22, 103-108 (2005). [CrossRef]
  16. Y. Min, Y. Cai, H. T. Eyyuboğlu, Y. Baykal, and O. Korotkova, “Evolution of the degree of polarization of an electromagnetic Gaussian Schell-model beam in a Gaussian cavity,” Opt. Lett. 33, 2266-2268 (2008). [CrossRef]
  17. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399-416 (1852).
  18. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 1999).
  19. O. Korotkova and E. Wolf, “Changes in the state of polarization of a random electromagnetic beam on propagation,” Opt. Commun. 246, 35-43 (2005). [CrossRef]
  20. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]
  21. O. Korotkova, M. Salem, and E. Wolf, “Beam conditions for radiation generated by an electromagnetic Gaussian Schell-model source,” Opt. Lett. 29, 1173-1175 (2004). [CrossRef] [PubMed]
  22. H. Roychowdhury and O. Korotkova, “Realizability conditions for electromagnetic Gaussian Schell-model sources,” Opt. Commun. 249, 379-385 (2005). [CrossRef]
  23. W. Casperson and S. D. Lunnam, “Gaussian modes in high loss laser resonators,” Appl. Opt. 14, 1193-1199 (1975). [CrossRef] [PubMed]
  24. O. Korotkova and E. Wolf, “Generalized Stokes parameters of random electromagnetic beams,” Opt. Lett. 30, 198-200 (2005). [CrossRef] [PubMed]
  25. Q. Lin and Y. Cai, “Tensor ABCD law for partially coherent twisted anisotropic Gaussian Schell-model beams,” Opt. Lett. 27, 216-218 (2002). [CrossRef]
  26. Y. Cai, D. Ge, and Q. Lin, “Fractional Fourier transform for partially coherent and partially polarized Gaussian Schell-model beams,” J. Opt. A, Pure Appl. Opt. 5, 453-459 (2003). [CrossRef]
  27. D. Ge, Y. Cai, and Q. Lin, “Propagation of partially polarized Gaussian Schell-model beams through aligned and misaligned optical system,” Chin. Phys. 14, 128-132 (2005). [CrossRef]
  28. R. K. Luneburg, Mathematical Theory of Optics (University of California Press, 1964), Chap. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited