OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 11 — Nov. 1, 2008
  • pp: 2734–2742

Young–Kirchhoff–Rubinowicz theory of diffraction in the light of Sommerfeld’s solution

Yusuf Z. Umul  »View Author Affiliations

JOSA A, Vol. 25, Issue 11, pp. 2734-2742 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (532 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Kirchhoff’s theory of diffraction is derived by transforming the exact solution of Sommerfeld into surface integrals for the half-plane problem. It is shown that the exact solution directly yields the integral theorem of Kirchhoff in the context of the modified diffraction theory of Kirchhoff. The line integrals of Young–Rubinowicz are also derived by considering the rigorous solution of the reflected scattered fields for grazing incidence.

© 2008 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(260.0260) Physical optics : Physical optics
(260.1960) Physical optics : Diffraction theory

ToC Category:
Physical Optics

Original Manuscript: May 22, 2008
Revised Manuscript: August 29, 2008
Manuscript Accepted: September 5, 2008
Published: October 15, 2008

Yusuf Z. Umul, "Young-Kirchhoff-Rubinowicz theory of diffraction in the light of Sommerfeld's solution," J. Opt. Soc. Am. A 25, 2734-2742 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Rubinowicz, “Thomas Young and the theory of diffraction,” Nature (London) 180, 160-162 (1957). [CrossRef]
  2. O. M. Bucci and G. Pelosi, “From wave theory to ray optics,” IEEE Antennas Propag. Mag. 36, 35-42 (1994). [CrossRef]
  3. G. Kirchhoff, “Zur Theorie der Lichtstrahlen,” Ann. Phys. 254, 663-695 (1883). [CrossRef]
  4. B. B. Baker and E. T. Copson, The Mathematical Theory of Huygens' Principle (Oxford U. Press, 1953).
  5. E. Maey, “Uber die Beugung des Lichtes an einem geraden, scharfen Schirmrande,” Ann. Phys. 285, 69-104 (1893). [CrossRef]
  6. A. Rubinowicz, “Die Beugungswelle in der Kirchhoffschen Theorie der Beugungserscheinungen,” Ann. Phys. 358, 257-278 (1917). [CrossRef]
  7. S. Ganci, “A general scalar solution for the half-plane problem,” J. Mod. Opt. 42, 1707-1711 (1995). [CrossRef]
  8. S. Ganci, “Half-plane diffraction in a case of oblique incidence,” J. Mod. Opt. 43, 2543-2551 (1996). [CrossRef]
  9. P. Liu and B. Lü, “Diffraction of spherical waves at an annular aperture in the use of the boundary diffraction wave theory: A comparison of different diffraction integral approaches,” Optik (Stuttgart) 116, 449-453 (2005). [CrossRef]
  10. G. Franceschetti, A. Iodice, A. Natale, and D. Riccio, “Stochastic theory of edge diffraction,” IEEE Trans. Antennas Propag. 56, 437-449 (2008). [CrossRef]
  11. A. Sommerfeld, “Mathematische Theorie of Diffraction,” Math. Ann. 47, 317-374 (1896). [CrossRef]
  12. Y. Z. Umul, “Modified theory of physical optics,” Opt. Express 12, 4959-4972 (2004). [CrossRef] [PubMed]
  13. Y. Z. Umul, “Modified theory of physical optics approach to wedge diffraction problems,” Opt. Express 13, 216-224 (2005). [CrossRef] [PubMed]
  14. Y. Z. Umul, “MTPO based potential function of the boundary diffraction wave theory,” Opt. Laser Technol. 40, 769-774 (2008). [CrossRef]
  15. Y. Z. Umul, “Modified diffraction theory of Kirchhoff,” J. Opt. Soc. Am. A 25, 1850-1860 (2008).
  16. Y. Z. Umul, “Integral representation of the edge diffracted waves along the ray path of the transition region,” J. Opt. Soc. Am. A 25, 2149-2155 (2008). [CrossRef]
  17. F. Gori, “Diffraction from a half-plane. A new derivation of the Sommerfeld solution,” Opt. Commun. 48, 67-70 (1982). [CrossRef]
  18. S. W. Lee and G. A. Deschamps, “A uniform asymptotic theory of electromagnetic diffraction by a curved wedge,” IEEE Trans. Antennas Propag. AP-24, 25-34 (1976). [CrossRef]
  19. P. Ya. Ufimtsev, “Improved theory of acoustic elementary edge waves,” J. Acoust. Soc. Am. 120, 631-635 (2006). [CrossRef]
  20. P. Ya. Ufimtsev, “Improved physical theory of diffraction: Removal of the grazing singularity,” IEEE Trans. Antennas Propag. 54, 2698-2702 (2006). [CrossRef]
  21. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 2003).
  22. K. Miyamoto and E. Wolf, “Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave--Part I,” J. Opt. Soc. Am. 52, 615-625 (1962). [CrossRef]
  23. K. Miyamoto and E. Wolf, “Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave--Part II,” J. Opt. Soc. Am. 52, 626-637 (1962). [CrossRef]
  24. A. Rubinowicz, “On the anomalous propagation of phase in the focus,” Phys. Rev. 54, 931-936 (1938). [CrossRef]
  25. W. B. Gordon, “Vector potentials and physical optics,” J. Math. Phys. 16, 448-454 (1975). [CrossRef]
  26. J. S. Asvestas, “Line integrals and physical optics. Part II. The conversion of the Kirchhoff surface integral to a line integral,” J. Opt. Soc. Am. A 2, 896-902 (1985). [CrossRef]
  27. G. W. Forbes and A. A. Asatryan, “Reducing canonical diffraction problems to singularity-free one-dimensional integrals,” J. Opt. Soc. Am. A 15, 1320-1328 (1998). [CrossRef]
  28. A. Dubra and J. A. Ferrari, “Diffracted field by an arbitrary aperture,” Am. J. Phys. 67, 87-92 (1999). [CrossRef]
  29. Y. Z. Umul, “Diffraction of evanescent plane waves by a resistive half-plane,” J. Opt. Soc. Am. A 24, 3226-3232 (2007). [CrossRef]
  30. Y. Z. Umul, “Uniform line integral representation of the edge-diffracted fields,” J. Opt. Soc. Am. A 25, 133-137 (2008). [CrossRef]
  31. W. C. Elmore and M. A. Heald, Physics of Waves (McGraw-Hill, 1969).
  32. S. R. Seshadri and T. T. Wu, “High-frequency diffraction of plane waves by an infinite slit for grazing incidence,” IRE Trans. Antennas Propag. 8, 37-42 (1960). [CrossRef]
  33. R. Tiberio and R. G. Kouyoumjian, “A uniform GTD solution for the diffraction by strips illuminated at grazing incidence,” Radio Sci. 14, 933-941 (1979). [CrossRef]
  34. Y. Z. Umul, “Uniform theory for the diffraction of evanescent plane waves,” J. Opt. Soc. Am. A 24, 2426-2430 (2007). [CrossRef]
  35. H. L. Bertoni, A. C. Green and L. B. Felsen, “Shadowing an inhomogeneous plane wave by an edge,” J. Opt. Soc. Am. 68, 983-989 (1978). [CrossRef]
  36. V. I. Sehernev, “Diffraction of an inhomogeneous plane wave by a half plane,” Radiophys. Quantum Electron. 19, 1285-1291 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited