OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 11 — Nov. 1, 2008
  • pp: 2758–2763

Free-space delay lines and resonances with ultraslow pulsed Bessel beams

Carlos J. Zapata-Rodríguez, Miguel A. Porras, and Juan J. Miret  »View Author Affiliations

JOSA A, Vol. 25, Issue 11, pp. 2758-2763 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (340 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We investigate the ultraslow motion of polychromatic Bessel beams in unbounded, nondispersive media. Control over the group velocity is exercised by means of the angular dispersion of pulsed Bessel beams of invariant transverse spatial frequency, which spontaneously emerge from near-field generators. Temporal dynamics in transients and resonances over homogeneous delay lines (dielectric slabs) are also examined.

© 2008 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(250.5530) Optoelectronics : Pulse propagation and temporal solitons
(320.0320) Ultrafast optics : Ultrafast optics

ToC Category:

Original Manuscript: March 7, 2008
Revised Manuscript: July 25, 2008
Manuscript Accepted: July 28, 2008
Published: October 16, 2008

Carlos J. Zapata-Rodríguez, Miguel A. Porras, and Juan J. Miret, "Free-space delay lines and resonances with ultraslow pulsed Bessel beams," J. Opt. Soc. Am. A 25, 2758-2763 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. W. Boyd and D. J. Gauthier, Slow and Fast Light, Progress in Optics, Vol. 43 of E.Wolf, ed. (Elsevier, 2002), chap. 6, pp. 497-530.
  2. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metrespersecond in an ultracold atomic gas,” Nature 397, 594-598 (1999). [CrossRef]
  3. M. D. Lukin and A. Imamoğlu, “Controlling photons using electromagnetically induced transparency,” Nature 413, 273-276 (2001). [CrossRef] [PubMed]
  4. M. Artoni, G. C. La Rocca, F. S. Cataliotti, and F. Bassani, “Highly anomalous group velocity of light in ultracold rubidium gases,” Phys. Rev. A 63, 023805 (2001). [CrossRef]
  5. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and slow light propagation in a room-temperature solid,” Science 301, 200-202 (2003). [CrossRef] [PubMed]
  6. J. A. Stratton, Electromagnetic Theory (Mcgraw-Hill College, 1941).
  7. M. Zamboni-Rached, K. Z. Nóbrega, E. Recami, and H. E. Hernández-Figueroa, “Superluminal X-shaped beams propagating without distortion along a coaxial guide,” Phys. Rev. E 66, 046617 (2002). [CrossRef]
  8. M. Zamboni-Rached, F. Fontana, and E. Recami, “Superluminal localized solutions to Maxwell equations propagating along a waveguide: the finite-energy case,” Phys. Rev. E 67, 036620 (2003). [CrossRef]
  9. L. Brillouin, Wave Propagation and Group Velocity (Academic, 1960).
  10. T. M. Wallett and A. H. Qureshi, Review of Slow-Wave Structures, NASA Technical Memorandum 106639 (NASA, 1994), pp. 1-28.
  11. S. Wang, H. Erlig, H. R. Fetterman, E. Yablonovitch, V. Grubsky, D. S. Starodubov, and J. Feinberg, “Measurement of the temporal delay of a light pulse through a one-dimensional photonic crystal,” Microwave Opt. Technol. Lett. 20, 17-21 (1999). [CrossRef]
  12. H. Altug and J. Vucković, “Experimental demonstration of the slow group velocity of light in two-dimensional coupled photonic crystal microcavity arrays,” Appl. Phys. Lett. 86, 111102 (2005). [CrossRef]
  13. H. Gersen, T. J. Karle, R. J. P. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94, 073903 (2005). [CrossRef] [PubMed]
  14. J. G. Rivas, A. F. Benet, J. Niehusmann, P. H. Bolivar, and H. Kurz, “Time-resolved broadband analysis of slow-light propagation and superluminal transmission of electromagnetic waves in three-dimensional photonic crystals,” Phys. Rev. B 71, 155110 (2005). [CrossRef]
  15. M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Slow-light, band-edge waveguides for tunable time delays,” Opt. Express 13, 7145-7159 (2005). [CrossRef] [PubMed]
  16. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, and P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14, 9444-9450 (2006). [CrossRef] [PubMed]
  17. A. Melloni, F. Morichetti, and M. Martinelli, “Optical slow wave structures,” Opt. Photonics News 14, 44-48 (2003). [CrossRef]
  18. J. Durnin, J. J. Miceli, and J. H. Eberly, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499-1501 (1987). [CrossRef] [PubMed]
  19. J. Lu and J. F. Greenleaf, “Nondiffracting X waves--exact solutions to free-space scalar wave equation and their finite aperture realizations,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 19-31 (1992). [CrossRef] [PubMed]
  20. P. Saari, “Localized waves in femtosecond optics” (2003), personal communication.
  21. S. Licul, “On the generation and applications of localized waves,” M.Sc. thesis (Virginia Polytechnic Institute, 2001).
  22. H. E. Hernández-Figueroa, M. Zamboni-Rached, and E. Recami, Localized Waves (Wiley, 2008). [CrossRef]
  23. M. A. Porras, G. Valiulis, and P. D. Trapani, “Unified description of Bessel X waves with cone dispersion and tilted pulses,” Phys. Rev. E 68, 016613 (2003). [CrossRef]
  24. C. J. Zapata-Rodríguez and M. A. Porras, “X-wave bullets with negative group velocity in vacuum,” Opt. Lett. 31, 3532-3534 (2006). [CrossRef] [PubMed]
  25. I. Alexeev, K. Kim, and H. M. Milchberg, “Measurement of the superluminal group velocity of an ultrashort Bessel beam pulse,” Phys. Rev. Lett. 88, 073901 (2002). [CrossRef] [PubMed]
  26. E. Recami, M. Zamboni-Rached, K. Z. Nóbrega, C. A. Dartora, and H. E. Hernández, “On the localized superluminal solutions to the Maxwell equations,” IEEE J. Sel. Top. Quantum Electron. 9, 59-73 (2003). [CrossRef]
  27. P. Saari and K. Reivelt, “Evidence of X-shaped propagation-invariant localized light waves,” Phys. Rev. Lett. 79, 4135-4138 (1997). [CrossRef]
  28. H. Sõnajalg, M. Rätsep, and P. Saari, “Demonstration of the Bessel-X pulse propagating with strong lateral and longitudinal localization in a dispersive medium,” Opt. Lett. 22, 310-312 (1997). [CrossRef] [PubMed]
  29. M. A. Porras, “Diffraction-free and dispersion-free pulsed beam propagation in dispersive media,” Opt. Lett. 26, 1364-1366 (2001). [CrossRef]
  30. Z. Liu and D. Fan, “Propagation of pulsed zeroth-order Bessel beams,” J. Mod. Opt. 45, 17-22 (1998). [CrossRef]
  31. C. J. R. Sheppard, “Generalized Bessel pulse beams,” J. Opt. Soc. Am. A 19, 2218-2222 (2002). [CrossRef]
  32. M. Zamboni-Rached and E. Recami, “Subluminal wave bullets: exact localized subluminal solutions to the wave equations,” Phys. Rev. A 77, 033824 (2008). [CrossRef]
  33. M. Zamboni-Rached, “Stationary optical wave fields with arbitrary longitudinal shape by superposing equal frequency Bessel beams: frozen waves,” Opt. Express 12, 4001-4006 (2004). [CrossRef] [PubMed]
  34. C. J. R. Sheppard, “Bessel pulse beams and focus wave modes,” J. Opt. Soc. Am. A 18, 2594-2600 (2001). [CrossRef]
  35. B. Lü and Z. Liu, “Propagation properties of ultrashort pulsed Bessel beams in dispersive media,” J. Opt. Soc. Am. A 20, 582-587 (2003). [CrossRef]
  36. A. M. Shaarawi, “Comparison of two localized wave fields generated from dynamic apertures,” J. Opt. Soc. Am. A 14, 1804-1816 (1997). [CrossRef]
  37. C. J. Zapata-Rodríguez and M. T. Caballero, “Isotropic compensation of diffraction-driven angular dispersion,” Opt. Lett. 32, 2472-2474 (2007). [CrossRef] [PubMed]
  38. C. J. Zapata-Rodríguez, M. T. Caballero, and J. J. Miret, “Angular spectrum of diffracted wavefields with apochromatic correction,” Opt. Lett. 331753-1755 (2008). [CrossRef] [PubMed]
  39. C. J. Zapata-Rodríguez, “Focal waveforms with tunable carrier frequency using dispersive aperturing,” Opt. Commun. 281, 4840-4843 (2008). [CrossRef]
  40. L. Niggl, T. Lanzl, and M. Maier, “Properties of Bessel beams generated by periodic gratings of circular symmetry,” J. Opt. Soc. Am. A 14, 27-33 (1997). [CrossRef]
  41. S. Holm, “Bessel and conical beams and approximation with annular arrays,” IEEE Trans. Ultrason., Ferroelect., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 712-718 (1998). [CrossRef]
  42. T. Erdogan, O. King, G. W. Wicks, D. G. Hall, E. H. Anderson, and M. J. Rooks, “Circularly symmetric operation of a concentric-circle-grating, surface-emitting, AlGaAs/GaAs quantum-well semiconductor laser,” Appl. Phys. Lett. 60, 1921-1923 (1992). [CrossRef]
  43. R. H. Jordan and D. G. Hall, “Highly directional surface emission from concentric-circle gratings on planar optical waveguides: the field expansion method,” J. Opt. Soc. Am. A 12, 84-94 (1995). [CrossRef]
  44. P. Polesana, A. Couairon, D. Faccio, A. Parola, M. A. Porras, A. Dubietis, A. Piskarskas, and P. Di Trapani, “Observation of conical waves in focusing, dispersive, and dissipative Kerr media,” Phys. Rev. Lett. 22, 223902 (2007). [CrossRef]
  45. P. L. Greene and D. G. Hall, “Properties and diffraction of vector Bessel-Gauss beams,” J. Opt. Soc. Am. A 15, 3020-3027 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited