OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 11 — Nov. 1, 2008
  • pp: 2817–2825

Adaptation and perceptual norms in color vision

Michael A. Webster and Deanne Leonard  »View Author Affiliations


JOSA A, Vol. 25, Issue 11, pp. 2817-2825 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002817


View Full Text Article

Enhanced HTML    Acrobat PDF (632 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Many perceptual dimensions are thought to be represented relative to an average value or norm. Models of norm-based coding assume that the norm appears psychologically neutral because it reflects a neutral response in the underlying neural code. We tested this assumption in human color vision by asking how judgments of “white” are affected as neural responses are altered by adaptation. The adapting color was varied to determine the stimulus level that did not bias the observer’s subjective white point. This level represents a response norm at the stages at which sensitivity is regulated by the adaptation, and we show that these response norms correspond to the perceptually neutral stimulus and that they can account for how the perception of white varies both across different observers and within the same observer at different locations in the visual field. We also show that individual differences in perceived white are reduced when observers are exposed to a common white adapting stimulus, suggesting that the perceptual differences are due in part to differences in how neural responses are normalized. These results suggest a close link between the norms for appearance and coding in color vision and illustrate a general paradigm for exploring this link in other perceptual domains.

© 2008 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: May 30, 2008
Revised Manuscript: August 24, 2008
Manuscript Accepted: August 25, 2008
Published: October 23, 2008

Virtual Issues
Vol. 4, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Michael A. Webster and Deanne Leonard, "Adaptation and perceptual norms in color vision," J. Opt. Soc. Am. A 25, 2817-2825 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-11-2817


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Pokorny, S. Shevell, and V. C. Smith, “Colour appearance and colour constancy,” in Vision and Visual Dysfunction 6: The Perception of Colour, P.Gouras, ed. (Macmillan, 1991), pp. 43-61.
  2. D. A. Leopold and I. Bondar, “Adaptation to complex visual patterns in humans and monkeys,” in Fitting the Mind to the World: Adaptation and Aftereffects in High Level Vision, C.W. G.Clifford and G.Rhodes, eds. (Oxford U. Press, 2005), pp. 189-211.
  3. J. J. Gibson and M. Radner, “Adaptation, after-effect and contrast in the perception of tilted lines. I. Quantitative studies,” J. Exp. Psychol. 20, 453-467 (1937). [CrossRef]
  4. D. A. Leopold, A. J. O'Toole, T. Vetter, and V. Blanz, “Prototype-referenced shape encoding revealed by high-level aftereffects,” Nat. Neurosci. 4, 89-94 (2001). [CrossRef] [PubMed]
  5. H. Helson, Adaptation-Level Theory (Harper and Row, 1964).
  6. L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384-404 (1957). [CrossRef] [PubMed]
  7. O. Braddick, F. W. Campbell, and J. Atkinson, “Channels in vision: basic aspects,” in Handbook of Sensory Physiology VIII, R.Held, H.W.Leibowitz, and H.Teuber, eds. (Springer-Verlag, 1978), pp. 3-38.
  8. D. J. Field, “Relations between the statistics of natural images and the response properties of cortical cells,” J. Opt. Soc. Am. A 4, 2379-2394 (1987). [CrossRef] [PubMed]
  9. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vision Res. 22, 1123-1131 (1982). [CrossRef] [PubMed]
  10. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607-614 (2000). [CrossRef]
  11. M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. II. Unique hues,” J. Opt. Soc. Am. A 17, 1545-1555 (2000). [CrossRef]
  12. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. (London) 357, 241-265 (1984).
  13. M. A. Webster and J. A. Wilson, “Interactions between chromatic adaptation and contrast adaptation in color appearance,” Vision Res. 40, 3801-3816 (2000). [CrossRef] [PubMed]
  14. V. Ekroll, F. Faul, R. Niederee, and E. Richter, “The natural center of chromaticity space is not always achromatic: a new look at color induction,” Proc. Natl. Acad. Sci. U.S.A. 99, 13352-13356 (2002). [CrossRef] [PubMed]
  15. J. Pokorny and V. C. Smith, “L/M cone ratios and the null point of the perceptual red/green opponent system,” Farbe 34, 53-57 (1987).
  16. J. Mollon, “Monge: the Verriest lecture, Lyon, July 2005,” Visual Neurosci. 23(3-4), 297-309 (2006). [CrossRef]
  17. L. Steels and T. Belpaeme, “Coordinating perceptually grounded categories through language: a case study for colour,” Behav. Brain Sci. 28, 469-489 (2005). [CrossRef] [PubMed]
  18. M. A. Webster and P. Kay, “Individual and population differences in focal colors,” in The Anthropology of Color, R.L.MacLaury, G.Paramei, and D.Dedrick, eds. (Benjamins, 2007), pp. 29-53.
  19. M. A. Webster, “Pattern selective adaptation in color and form perception,” in The Visual Neurosciences Volume 2, L.M.Chalupa and J.S.Werner, eds. (MIT Press, 2003), pp. 936-947.
  20. D. M. Snodderly, J. D. Auran, and F. C. Delori, “The macular pigment. II. Spatial distribution in primate retinas,” Invest. Ophthalmol. Visual Sci. 25, 674-685 (1984).
  21. R. D. Beer, J. Wortman, G. Horwitz, and D. MacLeod, “Compensation of white for macular filtering,” J. Vision 5, 282a (2005). [CrossRef]
  22. J. S. Werner and B. E. Schefrin, “Loci of achromatic points throughout the life span,” J. Opt. Soc. Am. A 10, 1509-1516 (1993). [CrossRef] [PubMed]
  23. J. L. Hardy, C. M. Frederick, P. Kay, and J. S. Werner, “Color naming, lens aging, and grue: what the optics of the aging eye can teach us about color language,” Psychol. Sci. , 321-327 (2005). [CrossRef] [PubMed]
  24. P. B. Delahunt, M. A. Webster, L. Ma, and J. S. Werner, “Long-term renormalization of chromatic mechanisms following cataract surgery,” Visual Neurosci. 21, 301-307 (2004). [CrossRef]
  25. J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783-792 (2002). [CrossRef] [PubMed]
  26. J. M. Stringham and B. R. J. Hammond, “Compensation for light loss due to filtering by macular pigment: relation to hue cancellation,” Ophthalmic Physiol. Opt. 27, 232-237 (2007). [CrossRef] [PubMed]
  27. D. H. Brainard and B. A. Wandell, “Asymmetric color matching: how color appearance depends on the illuminant,” J. Opt. Soc. Am. A 9, 1433-1448 (1992). [CrossRef] [PubMed]
  28. A. Chaparro, C. F. I. Stromeyer, G. Chen, and R. E. Kronauer, “Human cones appear to adapt at low light levels: measurements on the red-green detection mechanism,” Vision Res. 35, 3103-3118 (1995). [CrossRef] [PubMed]
  29. E.-J. Chichilnisky and B. A. Wandell, “Photoreceptor sensitivity changes explain color appearance shifts induced by large uniform backgrounds in dichoptic matching,” Vision Res. 35, 239-254 (1995). [CrossRef] [PubMed]
  30. W. S. Stiles, “Color vision: the approach through increment-threshold sensitivity,” Proc. Natl. Acad. Sci. U.S.A. 45, 100-114 (1959). [CrossRef]
  31. M. A. Webster and J. D. Mollon, “Colour constancy influenced by contrast adaptation,” Nature 373, 694-698 (1995). [CrossRef] [PubMed]
  32. S. M. Wuerger, “Color appearance changes resulting from iso-luminant chromatic adaptation,” Vision Res. 36, 3107-3118 (1996). [CrossRef] [PubMed]
  33. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183-1186 (1979). [CrossRef] [PubMed]
  34. M. A. Webster, E. Miyahara, G. Malkoc, and V. E. Raker, “Variations in normal color vision. I. Cone-opponent axes,” J. Opt. Soc. Am. A 17, 1535-1544 (2000). [CrossRef]
  35. P. Cavanagh, D. I. A. MacLeod, and S. M. Anstis, “Equiluminance: spatial and temporal factors and the contribution of blue-sensitive cones,” J. Opt. Soc. Am. A 4, 1428-1438 (1987). [CrossRef] [PubMed]
  36. P. West and J. Mellerio, “An innovative instrument for the psychophysical measurement of macular pigment optical density using a CRT display,” http://www.crsltd.com/research-topics/macular-pigment/index.html (2005).
  37. G. Wyszecki and W. S. Stiles, Color Science, 2nd ed. (Wiley, 1982).
  38. R. D. Beer, A. Dinca, and D. I. A. MacLeod, “Ideal white can be yellowish or bluish, but not reddish or greenish,” J. Vision 6, 417a (2006). [CrossRef]
  39. R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993). [CrossRef] [PubMed]
  40. P. Kaiser and R. M. B. Boynton, Human Color Vision (Optical Society of America, 1996).
  41. M. A. Webster, D. Kaping, Y. Mizokami, and P. Duhamel, “Adaptation to natural facial categories,” Nature 428, 558-561 (2004). [CrossRef]
  42. M. A. Webster and O. H. MacLin, “Figural after-effects in the perception of faces,” Psychon. Bull. Rev. 6, 647-653 (1999). [CrossRef]
  43. D. A. Leopold, I. V. Bondar, and M. A. Giese, “Norm-based face encoding by single neurons in the monkey inferotemporal cortex,” Nature 442, 572-575 (2006). [CrossRef] [PubMed]
  44. G. Loffler, G. Yourganov, F. Wilkinson, and H. R. Wilson, “fMRI evidence for the neural representation of faces,” Nat. Neurosci. 8, 1386-1390 (2005). [CrossRef] [PubMed]
  45. N. Davidenko, D. Remus, M. Ramscar, and K. Grill-Spector, “Stronger face-selective responses to typical versus distinctive faces when stimulus variability is controlled (abstract),” J. Vision 8, 531a (2008). [CrossRef]
  46. R. M. Boynton and D. N. Whitten, “Visual adaptation in monkey cones: recordings of late receptor potentials,” Science 170, 1423-1426 (1970). [CrossRef] [PubMed]
  47. J. L. Schnapf, B. J. Nunn, M. Meister, and D. A. Baylor, “Visual transduction in the cones of the monkey Macaca fascicularis,” J. Physiol. (London) 427, 681-713 (1990).
  48. A. Stockman, M. Langendorfer, H. E. Smithson, and L. T. Sharpe, “Human cone light adaptation: from behavioral measurements to molecular mechanisms,” J. Vision 6, 1194-1213 (2006). [CrossRef]
  49. C. M. Cicerone, M. M. Hayhoe, and D. I. A. MacLeod, “The spread of adaptation in human foveal and parafoveal cone vision,” Vision Res. 30, 1603-1615 (1990). [CrossRef] [PubMed]
  50. D. I. A. MacLeod, D. R. Williams, and W. Makous, “A visual nonlinearity fed by single cones,” Vision Res. 32, 347-363 (1992). [CrossRef] [PubMed]
  51. B. Lee, D. Dacey, S. VC, and J. Pokorny, “Horizontal cells reveal cone type-specific adaptation in primate retina,” Proc. Natl. Acad. Sci. U.S.A. 96, 14611-14616 (1999). [CrossRef] [PubMed]
  52. D. C. Hood and M. A. Finkelstein, “Sensitivity to light,” in Handbook of Perception and Human Performance, Volume 1: Sensory Processes and Perception, K.R.Boff, L.Kaufman, and J.P.Thomas, eds. (Wiley, 1986), pp. 5-1-5-66.
  53. J. Walraven, C. Enroth-Cugell, D. C. Hood, D. I. A. MacLeod, and J. L. Schnapf, “The control of visual sensitivity: receptoral and postreceptoral processes,” in Visual Perception The Neurophysiological Foundations, L.Spillmann and J.S.Werner, eds. (Academic, 1990), pp. 53-101.
  54. J. Walraven and J. S. Werner, “The invariance of unique white; a possible implication for normalizing cone action spectra,” Vision Res. 31, 2185-2193 (1991). [CrossRef] [PubMed]
  55. S. J. Ahn and D. I. A. MacLeod, “Link-specific adaptation in the luminance and chromatic channels,” Vision Res. 33, 2271-2286 (1993). [CrossRef] [PubMed]
  56. I. Kuriki, “The loci of achromatic points in a real environment under various illuminant chromaticities,” Vision Res. 46, 3055-3066 (2006). [CrossRef] [PubMed]
  57. H. Hibino, “Red-green and yellow-blue opponent-color responses as a function of retinal eccentricity,” Vision Res. 32, 1955-1964 (1992). [CrossRef] [PubMed]
  58. A. Kohn, “Visual adaptation: Physiology, mechanisms, and functional benefits,” J. Neurophysiol. 97, 3155-3164 (2007). [CrossRef] [PubMed]
  59. B. Wark, B. N. Lundstrum, and A. Fairhall, “Sensory adaptation,” Curr. Opin. Neurobiol. 17, 423-429 (2007). [CrossRef] [PubMed]
  60. M. A. Webster, J. S. Werner, and D. J. Field, “Adaptation and the phenomenology of perception,” in Fitting the Mind to the World: Adaptation and Aftereffects in High Level Vision, C.W. G.Clifford and G.Rhodes, eds. (Oxford U. Press, 2005), pp. 241-277.
  61. E. Vul, E. Krizay, and D. MacLeod, “The McCollough effect reflects permanent and transient adaptation in early visual cortex,” J. Vision 8, 1-12.
  62. R. M. Shapley and C. Enroth-Cugell, “Visual adaptation and retinal gain controls,” in Progress in Retinal Research, N.N.Osborne and G.J.Chader, eds. (Pergamon, 1984), pp. 263-343. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited