OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 11 — Nov. 1, 2008
  • pp: 2865–2874

Optical singularities and power flux in the near-field region of planar evanescent-field superlenses

Manuel Perez-Molina, L. Carretero, P. Acebal, and S. Blaya  »View Author Affiliations

JOSA A, Vol. 25, Issue 11, pp. 2865-2874 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (5344 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We rigorously analyze the optical singularities and power flux in the near-field region of the novel superlenses reported in [ Science 317, 927 (2007) ] For this purpose, we derive near-field expressions and a general criterion to classify the optical singularities in the vacuum, which are valid when the (s- or p-polarized) electromagnetic fields are generated by any planar field distribution with Cartesian or azimuthal symmetry. Such general results are particularized to the superlenses [ Science 317, 927 (2007) ], for which we identify a sequence of optical vortices and saddles that arise from evanescent-field interference. While the saddles are always located around the focal region, the vortex locations depend on the source field. The features of the topological connection between vortices and saddles are also discussed.

© 2008 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(260.2110) Physical optics : Electromagnetic optics
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

Original Manuscript: August 4, 2008
Revised Manuscript: September 15, 2008
Manuscript Accepted: September 17, 2008
Published: October 30, 2008

Manuel Perez-Molina, L. Carretero, P. Acebal, and S. Blaya, "Optical singularities and power flux in the near-field region of planar evanescent-field superlenses," J. Opt. Soc. Am. A 25, 2865-2874 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Abbe, “Beitrage zur Theorie des Mikroskops und der Mikroskop ischen Wahrnehmung,” Arch. Mikrosc. Anat. Entwicklungsmech. 9, 413-468 (1873). [CrossRef]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005). [CrossRef] [PubMed]
  3. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007). [CrossRef] [PubMed]
  4. G. Lerosey, J. de Rosny, A. Tourin, and M. Fink, “Focusing beyond the diffraction limit with far-field time reversal,” Science 315, 1120-1122 (2007). [CrossRef] [PubMed]
  5. A. Wong, E. Sarris, and G. Eleftheriades, “Metallic transmission screen for sub-wavelength focusing,” Electron. Lett. 43, 1402-1404 (2007). [CrossRef]
  6. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  7. R. Merlin, “Analytical solution of the almost-perfect-lens problem,” Appl. Phys. Lett. 84, 1290-1292 (2004). [CrossRef]
  8. R. Merlin, “Radiationless electromagnetic interference: evanescent-field lenses and perfect focusing,” Science 317, 927-929 (2007). [CrossRef] [PubMed]
  9. L. E. Helseth, “The almost perfect lens and focusing of evanescent waves,” Opt. Commun. 281, 1981-1985 (2008). [CrossRef]
  10. A. Y. Bekshaev and M. S. Soskin, “Tranverse energy flows in vectorial fields of paraxial beams with singularities,” Opt. Commun. 271, 332-348 (2007). [CrossRef]
  11. H. F. Schouten, T. D. Visser, G. Gbur, D. Lenstra, and H. Blok, “Creation and annihilation of phase singularities near a sub-wavelength slit,” Opt. Express 11, 371-380 (2003). [CrossRef] [PubMed]
  12. G. D'Aguanno, N. Mattiucci, M. Bloemer, and A. Desyatnikov, “Optical vortices during a superresolution process in a metamaterial,” Phys. Rev. A 44, 043825 (2008). [CrossRef]
  13. M. C. Yang and K. J. Webb, “Poynting vector analysis of a superlens,” Opt. Lett. 30, 2382-2384 (2005). [CrossRef] [PubMed]
  14. P. C. Clemmow, The Plane Wave Spectrum Representation of Electromagnetic Fields (Pergamon, 1966).
  15. In general, for two nonzero complex numbers a,b, it holds that Re[ab*]=∣ab∣cos(arg[a]−arg[b]) and Im[ab*]=∣ab∣sin(arg[a]−arg[b]), being ∣ab∣>0. In particular, Re[ab*]=0 if and only if arg[a]−arg[b]=+/-π/2, whereas Im[ab*]=0 if and only if arg[a]−arg[b]=0 or arg[a]−arg[b]=+/-π.
  16. I. S. Gradshteyn and I. Ryzhik, Table of Integrals, Series and Products (Academic, 1994).
  17. A. V. Novitsky and D. V. Novitsky, “Negative propagation of vector Bessel beams,” J. Opt. Soc. Am. B 24, 2844-2849 (2007). [CrossRef]
  18. J. D. Weston, “Some remarks about the curl of a vector field,” The American Mathematical Monthly, April 1961, pp. 359-361.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited