OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: 2971–2979

Scattering of an electromagnetic plane wave by a Luneburg lens. I. Ray theory

James A. Lock  »View Author Affiliations


JOSA A, Vol. 25, Issue 12, pp. 2971-2979 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002971


View Full Text Article

Enhanced HTML    Acrobat PDF (357 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For a plane wave incident on either a Luneburg lens or a modified Luneburg lens, the magnitude and phase of the transmitted electric field are calculated as a function of the scattering angle in the context of ray theory. It is found that the ray trajectory and the scattered intensity are not uniformly convergent in the vicinity of edge ray incidence on a Luneburg lens, which corresponds to the semiclassical phenomenon of orbiting. In addition, it is found that rays transmitted through a large-focal-length modified Luneburg lens participate in a far-zone rainbow, the details of which are exactly analytically soluble in ray theory. Using these results, the Airy theory of the modified Luneburg lens is derived and compared with the Airy theory of the rainbows of a homogeneous sphere.

© 2008 Optical Society of America

OCIS Codes
(080.2710) Geometric optics : Inhomogeneous optical media
(080.5692) Geometric optics : Ray trajectories in inhomogeneous media

ToC Category:
Scattering

History
Original Manuscript: July 30, 2008
Manuscript Accepted: September 11, 2008
Published: November 12, 2008

Citation
James A. Lock, "Scattering of an electromagnetic plane wave by a Luneburg lens. I. Ray theory," J. Opt. Soc. Am. A 25, 2971-2979 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-12-2971


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge U. Press, 1980), footnote p. 147.
  2. H. Sakurai, T. Hashidate, M. Ohki, K. Motojima, and S. Kozaki, “Electromagnetic scattering by the Luneburg lens reflector,” Int. J. Electron. 84, 635-645 (1998). [CrossRef]
  3. A. D. Greenwood and J.-M. Jin, “A field picture of wave propagation in inhomogeneous dielectric lenses,” IEEE Antennas Propag. Mag. 41, 9-17 (1999). [CrossRef]
  4. J. M. Gordon, “Spherical gradient-index lenses as perfect imaging and maximum power transfer devices,” Appl. Opt. 39, 3825-3832 (2000). [CrossRef]
  5. A. S. Gutman, “Modified Luneburg lens,” J. Appl. Phys. 25, 855-859 (1954). [CrossRef]
  6. J. Sochacki, “Exact analytical solution of the generalized Luneburg lens problem,” J. Opt. Soc. Am. 73, 789-795 (1983). [CrossRef]
  7. J. Sochacki, “Generalized Luneburg lens problem solution: a comment,” J. Opt. Soc. Am. 73, 1839 (1983). [CrossRef]
  8. J. R. Flores, J. Sochacki, M. Sochacka, and R. Staronski, “Quasi-analytical ray tracing through the generalized Luneburg lens,” Appl. Opt. 31, 5167-5170 (1992). [CrossRef] [PubMed]
  9. J. A. Lock, “Scattering of a plane wave by a Luneburg lens. II. Wave theory,” J. Opt. Soc. Am. A 25, 2980-2990 (2008). [CrossRef]
  10. J. A. Lock, “Scattering of a plane wave by a Luneburg lens. III. Finely stratified multilayer sphere model,” J. Opt. Soc. Am. A 25, 2991-3000 (2008). [CrossRef]
  11. K. W. Ford and J. A. Wheeler, “Semiclassical description of scattering,” Ann. Phys. (N.Y.) 7, 259-286 (1959). [CrossRef]
  12. M. V. Berry and K. E. Mount, “Semiclassical approximations in wave mechanics,” Rep. Prog. Phys. 35, 315-397 (1972), Secs. 6.2, 6.3. [CrossRef]
  13. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge U. Press, 1980), p. 123.
  14. B. R. Johnson, “Light scattering by a multilayer sphere,” Appl. Opt. 35, 3286-3296 (1996). [CrossRef] [PubMed]
  15. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), p. 205.
  16. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983), p. 167.
  17. N. Fiedler-Ferrari, H. M. Nussenzveig, and W. J. Wiscombe, “Theory of near-critical-angle scattering from a curved interface,” Phys. Rev. A 43, 1005-1038 (1991). [CrossRef] [PubMed]
  18. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981), p. 207.
  19. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983), p. 175.
  20. F. Michel, G. Reidemeister, and S. Ohkubo, “Luneburg lens approach to nuclear rainbow scattering,” Phys. Rev. Lett. 89, 152701-1-152701-4 (2002). [CrossRef]
  21. J. A. Lock and T. A. McCollum, “Further thoughts on Newton's zero-order rainbow,” Am. J. Phys. 62, 1082-1089 (1994). [CrossRef]
  22. C. L. Brockman and N. G. Alexopoulos, “Geometrical optics of inhomogeneous particles: glory ray and the rainbow revisited,” Appl. Opt. 16, 166-174 (1977). [CrossRef] [PubMed]
  23. J. A. Adam and P. Laven, “Rainbows from inhomogeneous transparent spheres: a ray-theoretic approach,” Appl. Opt. 46, 922-929 (2007). [CrossRef] [PubMed]
  24. H. M. Nussenzveig, “High-frequency scattering by a transparent sphere. II. Theory of the rainbow and the glory,” J. Math. Phys. 10, 125-176 (1969). [CrossRef]
  25. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, 1964), pp. 448, 449 and Eqs. (10.4.60), (10.4.62).
  26. J. A. Lock, C. L. Adler, and R. F. Fleet, “Rainbows in the grass I: external-reflection rainbows from pendant droplets,” Appl. Opt. (to be published). [PubMed]
  27. C. L. Adler, J. A. Lock, and R. F. Fleet, “Rainbows in the grass II: arbitrary diagonal incidence,” Appl. Opt. (to be published). [PubMed]
  28. V. Khare and H. M. Nussenzveig, “Theory of the rainbow,” Phys. Rev. Lett. 33, 976-980 (1974). [CrossRef]
  29. There are some discrepancies in the literature concerning Eq. . The form given here when applied to p=2 and N=1.333 agrees with Eq. and Table 1 of but does not agree for p=2 and N=1.333 with Eqs. (4.30), (4.31), and (4.34) of the earlier , which were reproduced as Eqs. (5.106) and (5.108) of . The appropriate quantities to expand in Taylor series about the rainbow angle are Eq. (4.29) of and Eq. (5.62) of .
  30. W. T. Grandy, Scattering of Waves from Large Spheres (Cambridge U. Press, 2000). [CrossRef]
  31. J. A. Adam, “The mathematical physics of rainbows and glories,” Phys. Rep. 356, 229-365 (2002). [CrossRef]
  32. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, 1964), p. 446, Fig. 10.6.
  33. G. P. Konnen and J. H. de Boer, “Polarized rainbow,” Appl. Opt. 18, 1961-1965 (1979). [CrossRef] [PubMed]
  34. Most of the results of this paper and of were presented in preliminary form at the Fall Meeting of the Ohio Section of the American Physical Society, Cleveland Ohio, October 14-15, 2005.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited