OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: 3001–3012

Tensor methods for hyperspectral data analysis: a space object material identification study

Qiang Zhang, Han Wang, Robert J. Plemmons, and V. Pau'l Pauca  »View Author Affiliations


JOSA A, Vol. 25, Issue 12, pp. 3001-3012 (2008)
http://dx.doi.org/10.1364/JOSAA.25.003001


View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An important and well-studied problem in hyperspectral image data applications is to identify materials present in the object or scene being imaged and to quantify their abundance in the mixture. Due to the increasing quantity of data usually encountered in hyperspectral datasets, effective data compression is also an important consideration. In this paper, we develop novel methods based on tensor analysis that focus on all three of these goals: material identification, material abundance estimation, and data compression. Test results are reported in all three perspectives.

© 2008 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(100.6890) Image processing : Three-dimensional image processing
(100.3008) Image processing : Image recognition, algorithms and filters
(110.4234) Imaging systems : Multispectral and hyperspectral imaging

ToC Category:
Image Processing

History
Original Manuscript: May 30, 2008
Revised Manuscript: August 15, 2008
Manuscript Accepted: September 26, 2008
Published: November 18, 2008

Citation
Qiang Zhang, Han Wang, Robert J. Plemmons, and V. Pau'l Pauca, "Tensor methods for hyperspectral data analysis: a space object material identification study," J. Opt. Soc. Am. A 25, 3001-3012 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-12-3001


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Bader, M. Berry, and M. Browne, “Discussion tracking in Enron email using PARAFAC,” in Survey of Text Mining II Clustering, Classification, and Retrieval, M.Berry and M.Castellanos, eds. (Springer, 2008), pp. 147-163.
  2. A. Cichocki, R. Zdunek, and S. Amari, “Hierarchical ALS algorithms for nonnegative matrix and 3D tensor factorization,” in Independent Component Analysis, Vol. 4666 of Lecture Notes in Computer Science (Springer, 2007), pp. 169-176. [CrossRef]
  3. A. Cichocki, R. Zdunek, and S. Amari, “Nonnegative matrix and tensor factorization,” IEEE Signal Process. Mag. 21, 142-145 (2008). [CrossRef]
  4. M. P. Friedlander and K. Hatz, “Computing nonnegative tensor factorizations,” Tech. Rep. (University of British Columbia, 2006).
  5. A. Shashua and T. Hazan, “Non-negative tensor factorization with applications to statistics and computer vision,” in Proceedings of the 22nd International Conference on Machine Learning (ACM, 2005), pp. 792-799. [CrossRef]
  6. A. Shashua and A. Levin, “Linear image coding for regression and classification using the tensor-rank principle,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2001), pp. 42-49.
  7. D. Chen and R. Plemmons, “Nonnegativity constraints in numerical analysis.” presented at the Symposium on the Birth of Numerical Analysis, Leuven, Belgium, October 2007.
  8. P. Paatero and U. Tapper, “Positive matrix factorization a nonnegative factor model with optimal utilization of error-estimates of data value,” Environmetrics 5, 111-126 (1994). [CrossRef]
  9. D. Lee and H. Seung, “Learning the parts of objects by non-negative matrix factorization,” Nature 401, 788-791 (1999). [CrossRef] [PubMed]
  10. M. Berry, M. Browne, A. Langville, P. Pauca, and R. Plemmons, “A survey of algorithms and applications for approximate nonnegative matrix factorization,” Computat. Statistics Data Anal. 52, 155-173 (2007). [CrossRef]
  11. K. J. Abercromby, J. Africano, K. Hamada, E. Stansbery, P. Sydney and P. Kervin, “Physical properties of orbital debris from spectroscopic observations,” Adv. Space Res. 34, 1021-1025 (2004). [CrossRef]
  12. P. Pauca, J. Piper, and R. Plemmons, “Nonnegative matrix factorization for spectral data analysis,” Linear Algebr. Appl. 416, 29-47 (2006). [CrossRef]
  13. P. Pauca, J. Piper, R. Plemmons, and M. Giffin, “Object characterization from spectral data using nonnegative factorization and information theory,” in Proceedings of AMOS Technical Conference (Curran Associates, 2004), pp. 591-600.
  14. T. Blake, S. Cain, M. Goda, and K. Jerkatis, “Model of the AEOS Spectral Imaging Sensor (ASIS) for spectral image deconvolution,” in Proceedings of AMOS Technical Conference (Curran Associates, 2005).
  15. T. Blake, S. Cain, M. Goda, and K. Jerkatis, “Enhancing the resolution of spectral images,” Proc. SPIE 6233, 623309 (2006). [CrossRef]
  16. T. Blake, S. Cain, M. Goda, and K. Jerkatis, “Reconstruction of spectral images from the AEOS Spectral Imaging Sensor,” in Proceedings of AMOS Technical Conference (Curran Associates, 2006).
  17. A. Plaza, P. Martinez, R. Perez and J. Plaza, “Spatial/spectral endmember extraction by multidimensional morphological operations,” IEEE Trans. Geosci. Remote Sens. 40, 2025-2041 (2002). [CrossRef]
  18. J. Wang and C.-I. Chang, “Applications of independent component analysis (ICA) in endmember extraction and abundance quantification for hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 44, 2601-2616 (2006). [CrossRef]
  19. S. Kaewpijit, J. Le Moigne, and T. El-Ghazawi, “Automatic reduction of hyperspectral imagery using wavelet spectral analysis,” IEEE Trans. Geosci. Remote Sens. 41, 863-871 (2003). [CrossRef]
  20. S. Qian, B. Hollinger, D. Williams, and D. Manak, “Fast three-dimensional data compression of hyperspectral imagery using vector quantization with spectral-feature-based binary coding,” Opt. Eng. (Bellingham) 35, 3242-3249 (1996). [CrossRef]
  21. J. W. Boardman, F. A. Kruse, and R. O. Green, “Mapping target signatures via partial unmixing of AVIRIS data,” in Summaries of the Fifth JPL Airborne Earth Science Workshop, JPL Publication 1 (1995), pp. 23-26.
  22. M. Winter, “N-finder: an algorithm for fast autonomous spectral endmember determination in hyperspectral data,” Proc. SPIE 3753, 266-277 (1999). [CrossRef]
  23. R. Neville, K. Staenz, T. Szeredi, J. Lefebvre and P. Hauff, “Automatic endmember extraction from hyperspectral data for mineral exploration,” in Proceedings of the 4th International Airborne Remote Sensing Conference and Exhibition/21st Canadian Symposium on Remote Sensing (ERIM International 1999), pp. 21-24.
  24. N. Keshava, “A taxonomy of spectral unmixing algorithms and performance comparisons,” Rep. HTAP-9 (Lincoln Laboratory, MIT, 2002).
  25. D. Heinz and C.-I. Chang, “Fully constrained least squares linear mixture analysis method for material quantification in hyperspectral imagery,” IEEE Trans. Geosci. Remote Sens. 39, 529-545 (2001). [CrossRef]
  26. N. Goodwin, N. C. Coops, and C. Stone, “Assessing plantation canopy condition from airborne imagery using spectral mixture analysis and fractional abundances,” Int. J. Appl. Earth Obs. Geoinf. , 7, 11-28 (2005). [CrossRef]
  27. H. Kwon and N. M. Nasrabadi, “Hyperspectral target detection using kernel spectral matched filter,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, 2004), Vol. 27, pp. 127-127.
  28. Q. Du, C.-I Chang, D. C. Heinz, M. L. G. Althouse, I. W. Ginsberg, “A linear mixture analysis-based compression for hyperspectral image analysis,” in Proceeding of the IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2000), Vol. 2, pp. 585-587.
  29. K. Hege, D. O'Connell, W. Johnson, S. Basty, and E. Dereniak, “Hyperspectral imaging for astronomy and space surveillance,” Proc. SPIE 5159, 380-391 (2003). [CrossRef]
  30. J. Scholl, K. Hege, M. Lloyd-Hart, D. O'Conneel, W. Johnson, and E. Dereniak, “Evaluations of classification and spectral unmixing algorithms using ground based satellite imaging,” Proc. SPIE 6233, 1-12 (2006).
  31. N. K. M. Faber, R. Bro, and P. K. Hopke, “Recent developments in CANDECOMP/PARAFAC algorithms: a critical review,” Chemom. Intell. Lab. Syst. 65, 119-137 (2003). [CrossRef]
  32. R. A. Harshman, “Foundations of the PARAFAC procedure: models and conditions for an explanatory multi-modal factor analysis,” UCLA Working Papers in Phonetics (1970), Vol. 16, pp. 1-84.
  33. L. Grippo and M. Sciandrone, “On the convergence of the block nonlinear Gauss-Seidel method under convex constraints,” Oper. Res. Lett. 26, 127-136 (2000). [CrossRef]
  34. J. Kruskal, “Three-way arrays: rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics,” Linear Algebr. Appl. 18, 95-138 (1977). [CrossRef]
  35. C. L. Lawson and R. J. Hanson, Solving Least Squares Problems (Prentice Hall, 1974).
  36. R. Bro and S. D. Jong, “A fast non-negativity-constrained least squares algorithm,” J. Chemom. 11, 393-401 (1997). [CrossRef]
  37. M. Chu and M. M. Lin, “Low dimensional polytope approximation and its application to nonnegative matrix factorization,” SIAM J. Comput. 30, 1131-1155 (2008). [CrossRef]
  38. C. Lin, “Projected gradient methods for non-negative matrix factorization,” Neural Comput. 19, 2756-2779 (2007). [CrossRef] [PubMed]
  39. R. Zdunek and A. Cichocki, “Non-negative matrix factorization with quasi-Newton optimization,” in Proceedings of the Eighth International Conference on Artificial Intelligence and Soft Computing (Springer-Verlag, 2006), pp. 870-879.
  40. D. Bertsekas, “On the Goldstein-Levitin-Polyak gradient projection method,” IEEE Trans. Autom. Control 21, 174-184 (1976). [CrossRef]
  41. D.R.Lide, ed., CRC Handbook of Chemistry and Physics, 83rd ed. (CRC Press, 2002).
  42. H. Wang, “Nonnegative tensor factorization for hyperspectral data analysis,” Master's Thesis (Wake Forest University, 2007).
  43. K. Jorgersen Abercromby, NASA Johnson Space Center (personal communication, 2006).
  44. A. K. Jain, Fundamentals of Digital Image Processing (Prentice Hall, 1989).
  45. Y. Du, C-I. Chang, H. Ren, C-C. Chang, J. O. Jensen and F. M. D'Amico, “New hyperspectral discrimination measure for spectral characterization,” Opt. Eng. (Bellingham) 43, 1777-1786 (2004). [CrossRef]
  46. M. C. Roggemann and B. Welsh, Imaging Through Turbulence (CRC Press, 1996).
  47. Y. Huang, M. Ng, and Y. Wen, “A fast total variation minimization method for image restoration,” Multiscale Model. Simul. 7, 774-795 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited