OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: 3083–3096

Hologram synthesis for photorealistic reconstruction

Martin Janda, Ivo Hanák, and Levent Onural  »View Author Affiliations

JOSA A, Vol. 25, Issue 12, pp. 3083-3096 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (850 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Computation of diffraction patterns, and thus holograms, of scenes with photorealistic properties is a highly complicated and demanding process. An algorithm, based primarily on computer graphics methods, for computing full-parallax diffraction patterns of complicated surfaces with realistic texture and reflectivity properties is proposed and tested. The algorithm is implemented on single-CPU, multiple-CPU and GPU platforms. An alternative algorithm, which implements reduced occlusion diffraction patterns for much faster but somewhat lower quality results, is also developed and tested. The algorithms allow GPU-aided calculations and easy parallelization. Both numerical and optical reconstructions are conducted. The results indicate that the presented algorithms compute diffraction patterns that provide successful photorealistic reconstructions; the computation times are acceptable especially on the GPU implementations.

© 2008 Optical Society of America

OCIS Codes
(090.1760) Holography : Computer holography
(090.1995) Holography : Digital holography

ToC Category:

Original Manuscript: June 25, 2008
Manuscript Accepted: September 21, 2008
Published: November 24, 2008

Martin Janda, Ivo Hanák, and Levent Onural, "Hologram synthesis for photorealistic reconstruction," J. Opt. Soc. Am. A 25, 3083-3096 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948). [CrossRef] [PubMed]
  2. D. Gabor, “Microscopy by reconstructed wavefronts,” Proc. R. Soc. London, Ser. A 197, 454-487 (1949). [CrossRef]
  3. L. Onural, A. Gotchev, H. M. Ozaktas, and E. Stoykova, “A survey of signal processing problems and tools in holographic 3DTV,” IEEE Trans. Circuits Syst. Video Technol. 17, 1631-1646 (2007). [CrossRef]
  4. L. Yaroslavskii and N. Merzlyakov, Methods of Digital Holography, (Consultants Bureau, 1980).
  5. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt. 26, 4351-4360 (1987). [CrossRef] [PubMed]
  6. J. Rosen, “Computer-generated holograms of images reconstructed on curved surfaces,” Appl. Opt. 38, 6136-6140 (1999). [CrossRef]
  7. D. Mendlovic, G. Shabtay, U. Levi, Z. Zalevsky, and E. Marom, “Encoding technique for design of zero-order (on-axis) fraunhofer computer-generated holograms,” Appl. Opt. 36, 8427-8434 (1997). [CrossRef]
  8. A. G. Kirk and T. J. Hall, “Design of computer generated holograms by simulated annealing: observation of meta-stable states,” J. Mod. Opt. 39, 2531-2539 (1992). [CrossRef]
  9. V. Arrizón, G. Méndez, and D. Sánchez-de La-Llave, “Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators,” Opt. Express 13, 7913-7927 (2005). [CrossRef] [PubMed]
  10. Y. Sando, M. Itoh, and T. Yatagai, “Full-color computer-generated holograms using 3-D Fourier spectra,” Opt. Express 12, 6246-6251 (2004). [CrossRef] [PubMed]
  11. K. Matsushima and M. Takai, “Recurrence formulas for fast creation of synthetic three-dimensional holograms,” Appl. Opt. 39, 6587-6594 (2000). [CrossRef]
  12. M. Cywiak, M. Servin, and F. M. Santoyo, “Wave-front propagation by gaussian superposition,” Opt. Commun. 195, 351-359 (2001). [CrossRef]
  13. L. Ahrenberg, P. Benzie, M. Magnor, and J. Watson, “Computer generated holography using parallel commodity graphics hardware,” Opt. Express 14, 7636-7641 (2006). [CrossRef] [PubMed]
  14. A. Ritter, J. Böttger, O. Deussen, M. König, and T. Strothotte, “Hardware-based rendering of full-parallax synthetic holograms,” Appl. Opt. 38, 1364-1369 (1999). [CrossRef]
  15. J. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
  16. G. D. Sherman, “Application of the convolution theorem to Rayleigh's integral formulas,” J. Opt. Soc. Am. 57, 546-547 (1967). [CrossRef] [PubMed]
  17. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15, 857-867 (1998). [CrossRef]
  18. G. Esmer and L. Onural, “Computation of holographic patterns between tilted planes,” Proc. SPIE 6252, 62521K (2006). [CrossRef]
  19. L. Onural and H. M. Ozaktas, “Signal processing issues in diffraction and holographic 3DTV,” Signal Process. Image Commun. 22, ss169-177 (2007). [CrossRef]
  20. L. Onural, “Sampling of the diffraction field,” Appl. Opt. 39, 5929-5935 (2000). [CrossRef]
  21. A. Stern and B. Javidi, “Improved-resolution digital holography using the generalized sampling theorem for locally band-limited fields,” J. Opt. Soc. Am. A 23, 1227-1235 (2006). [CrossRef]
  22. L. Onural, “Exact analysis of the effects of sampling of the scalar diffraction field,” J. Opt. Soc. Am. A 24, 359-367 (2007). [CrossRef]
  23. J. T. Kajiya, “The rendering equation,” ACM SIGGRAPH Comput. Graph. 20, 143-150 (1986). [CrossRef]
  24. A. S. Glassner, Principles of Digital Image Synthesis, (Morgan Kaufmann, 1995), 1st ed..
  25. A. Watt, 3D Computer Graphics, 3rd ed. (Addison-Wesley, 2000).
  26. M. Lucente, “Optimization of hologram computation for real-time display,” Proc. SPIE 1667, 32-43 (1992). [CrossRef]
  27. M. Lucente and T. A. Galyean, “Rendering interactive holographic images,” in Proceedings of SIGGRAPH '95 (ACM, 1995), pp. 387-394. [CrossRef]
  28. J. L. Juárez-Pérez, A. Olivares-Pérez, and L. R. Berriel-Valdos, “Nonredundant calculation for creating digital Fresnel holograms,” Appl. Opt. 36, 7437-7443 (1997). [CrossRef]
  29. G. B. Esmer, L. Onural, H. M. Ozaktas, V. Uzunov, and A. Gotchev, “Performance assessment of a diffraction field computation method based on source model,” in Proceedings of the 3DTV-Conference 2008 (IEEE Xplore, 2008), pp. 257-260; http://ieeexplore.ieee.org.
  30. M. Kovachev, R. Ilieva, P. Benzie, G. B. Esmer, L. Onural, J. Watson, and T. Reyhan, Three-Dimensional Television: Capture, Transmission, and Display, (Springer, 2007), chap. 15.
  31. S. D. Roth, “Ray Casting for Modeling Solids,” J. Comput. Graph. Image Process. 18, 109-144 (1982). [CrossRef]
  32. D. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching2nd ed. (Addison-Wesley, 1998).
  33. M. Janda, I. Hanák, and V. Skala, “Digital HPO hologram rendering pipeline,” in Proceedings of EG2006 Short Papers, (Eurographics Association, 2006), pp. 81-84.
  34. M. Lucente, “Diffraction-specific fringe computation for electro-holography,” Ph.D. thesis (MIT, 1994).
  35. G. Amdahl, “Validity of the single-processor approach to achieving large scale computing capabilities,” in AFIPS Conference Proceedings, Vol. 30 (American Federation of Information Processing Societies Press, 1967), pp. 483-485.
  36. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2005).
  37. N. Masuda, T. Ito, T. Tanaka, A. Shiraki, and T. Sugie, “Computer generated holography using parallel commodity graphics hardware,” Opt. Express 14, 603-608 (2006). [CrossRef] [PubMed]
  38. C. Petz and M. Magnor, “Fast hologram synthesis for 3d geometry models using graphics hardware,” Proc. SPIE 5005, 266-275 (2003). [CrossRef]
  39. B. Phong, “Illumination for computer generated pictures,” Commun. ACM 18, 311-317 (1975). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited