OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Vol. 25, Iss. 12 — Dec. 1, 2008
  • pp: 3134–3143

In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development

A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt  »View Author Affiliations

JOSA A, Vol. 25, Issue 12, pp. 3134-3143 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1360 KB) Open Access ISP Components
Browse Datasets: MIDAS Click for help

Full-Text PDF contains links to datasets. See ISP homepage for software requirements and other information.

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Progress toward understanding embryonic heart development has been hampered by the inability to image embryonic heart structure and simultaneously measure blood flow dynamics in vivo. We have developed a spectral domain optical coherence tomography system for in vivo volumetric imaging of the chicken embryo heart. We have also developed a technique called spectral Doppler velocimetry (SDV) for quantitative measurement of blood flow dynamics. We present in vivo volume images of the embryonic heart from initial tube formation to development of endocardial cushions of the same embryo over several stages of development. SDV measurements reveal the influence of heart tube structure on blood flow dynamics.

© 2008 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(110.6880) Imaging systems : Three-dimensional image acquisition
(170.1420) Medical optics and biotechnology : Biology
(280.3340) Remote sensing and sensors : Laser Doppler velocimetry

ToC Category:
Imaging Systems

Original Manuscript: July 18, 2008
Revised Manuscript: October 19, 2008
Manuscript Accepted: October 20, 2008
Published: November 26, 2008

Virtual Issues
Vol. 4, Iss. 2 Virtual Journal for Biomedical Optics
Interactive Science Publishing (2008) Optics Express

A. M. Davis, F. G. Rothenberg, N. Shepherd, and J. A. Izatt, "In vivo spectral domain optical coherence tomography volumetric imaging and spectral Doppler velocimetry of early stage embryonic chicken heart development," J. Opt. Soc. Am. A 25, 3134-3143 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. American Heart Association, “Congenital heart defects in children fact sheet” (American Heart Association, 2004), available at www.americanheart.org/children.
  2. R. S. Reneman, T. Arts, and A. P. Hoeks, “Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory,” J. Vasc. Res. 43, 251-269 (2006). [CrossRef] [PubMed]
  3. J. R. Hove, R. W. Köster, A. S. Forouhar, G. Acevando-Bolton, S. E. Fraser, and M. Gharib, “Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis,” Nature 421, 172-177 (2003). [CrossRef] [PubMed]
  4. N. T. Ursem, C. S. Stekelenburg-de Vos, J. W. Wladimiroff, R. E. Poelmann, A. C. Gittenberger-de Groot, N. Hu, and E. B. Clark, “Ventricular diastolic filling characteristics in stage-24 chick embryos after extra-embryonic venous obstruction,” J. Exp. Biol. 207, 1487-1490 (2004). [CrossRef] [PubMed]
  5. A. S. Forouhar, M. Liebling, A. Hickerson, A. Nasiraei-Moghaddam, H.-J. Tsai, J. R. Hove, S. E. Fraser, M. E. Dickinson, and M. Gharib, “The embryonic vertebrate heart tube is a dynamic suction pump,” Science 312, 751-753 (2006). [CrossRef] [PubMed]
  6. L. A. Taber, J. Zhang, and R. Perucchio, “Computational model for the transition from peristaltic to pulsatile flow in the embryonic heart tube,” J. Biomech. Eng. 129, 441-449 (2007). [CrossRef] [PubMed]
  7. X. Zhang, T. M. Yelbuz, G. P. Kofer, M. A. Choma, M. L. Kirby, and G. A. Johnson, “Improved preparation of chick embryonic samples for magnetic resonance microscopy,” Magn. Reson. Med. 49, 1192-1195 (2003). [CrossRef] [PubMed]
  8. T. M. Yelbuz, X. Zhang, M. A. Choma, H. A. Stadt, M. Zdlanowicz, G. A. Johnson, and M. L. Kirby, “Approaching cardiac development in three dimensions by magnetic resonance microscopy,” Circulation 108, e154-e155 (2003). [CrossRef] [PubMed]
  9. C. T. Badea, B. Fubara, L. W. Hedlund, and G. A. Johnson, 4-D micro-CT of the mouse heart,” Mol. Imaging 4, 110-116 (2005). [PubMed]
  10. D. W. Holdsworth, M. Drangova, and A. Fenster, “A high-resolution XRII-based quantitative volume CT scanner,” Med. Phys. 20, 449-462 (1993). [CrossRef] [PubMed]
  11. M. J. Paulus, S. S. Gleason, S. J. Kennel, P. R. Hunsicker, and D. K. Johnson, “High resolution x-ray computed tomography: an emerging tool for small animal cancer research,” Neoplasia 2, 62-70 (2000). [CrossRef] [PubMed]
  12. P. Vennemann, K. T. Kiger, R. Lindken, B. C. W. Groenendijk, S. Stekelenburg-de Vos, T. L. M. ten Hugen, N. T. C. Ursem, R. E. Poelmann, J. Westerweel, and B. P. Hierck, “In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart,” J. Biomech. 39, 1191-1200 (2006). [CrossRef]
  13. M. Liebling, A. S. Forouhar, M. Gharib, S. E. Fraser, and M. E. Dickinson, “Four-dimensional cardiac imaging in living embryos via postacquisition synchronization of nongated slice sequences,” J. Biomed. Opt. 10, 054001 (2005). [CrossRef] [PubMed]
  14. F. S. Foster, M. Y. Zhang, Y. Q. Zhou, G. Liu, J. Mehi, E. Cherin, K. A. Harasiewicz, B. G. Starkoski, L. Zan, D. A. Knapik, and S. L. Adamson, “A new ultrasound instrument for in vivo microimaging of mice,” Ultrasound Med. Biol. 28, 1165-1172 (2002). [CrossRef] [PubMed]
  15. C. K. Phoon, O. Aristizabal, and D. H. Turnbull, “40 MHz Doppler characterization of umbilical and dorsal aortic blood flow in the early mouse embryo,” Ultrasound Med. Biol. 26, 1275-1283 (2000). [CrossRef] [PubMed]
  16. C. K. Phoon, O. Aristizabal, and D. H. Turnbull, “Spatial velocity profile in mouse embryonic aorta and Doppler-derived volumetric flow: a preliminary model,” Am. J. Physiol. Heart Circ. Physiol. 283, H908-H916 (2002). [PubMed]
  17. T. C. McQuinn, M. Bratoeva, A. DeAlmeida, M. Remond, R. P. Thompson, and D. Sedmera, “High-frequency ultrasonographic imaging of avian cardiovascular development,” Dev. Dyn. 236, 3503-3513 (2007). [CrossRef] [PubMed]
  18. S. A. Boppart, G. J. Tearney, B. E. Bouma, J. F. Southern, M. E. Brezinski, and J. G. Fujimoto, “Noninvasive assessment of the developing Xenopus cardiovascular system using optical coherence tomography,” Proc. Natl. Acad. Sci. U.S.A. 94, 4256-4261 (1997). [CrossRef] [PubMed]
  19. T. M. Yelbuz, M. A. Choma, L. Thrane, M. L. Kirby, and J. A. Izatt, “Optical coherence tomography: a new high-resolution imaging technology to study cardiac development in chick embryos,” Circulation 106, 2771-2774 (2002). [CrossRef] [PubMed]
  20. M. W. Jenkins, F. Rothenberg, D. Roy, V. P. Nikolski, Z. Hu, M. Watanabe, D. L. Wilson, I. R. Efimov, and A. M. Rollins, “4D embryonic cardiography using gated optical coherence tomography,” Opt. Express 14, 736-748 (2006). [CrossRef] [PubMed]
  21. W. Luo, D. L. Marks, T. S. Ralston, and S. A. Boppart, “Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system,” J. Biomed. Opt. 11, 021014 (2006). [CrossRef] [PubMed]
  22. J. Manner, L. Thrane, K. Norozi, and T. M. Yelbuz, “High-resolution in vivo imaging of the cross-sectional deformations of contracting embryonic heart loops using optical coherence tomography,” Dev. Dyn. 237, 953-961 (2008). [CrossRef] [PubMed]
  23. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  24. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995). [CrossRef]
  25. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003). [CrossRef] [PubMed]
  26. M. A. Choma, M. Sarunic, C. Yang, and J. Izatt, “Sensitivity advantage of swept-source and Fourier-domain optical coherence tomography,” Opt. Express 11, 2183-2189 (2003). [CrossRef] [PubMed]
  27. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067-2069 (2003). [CrossRef] [PubMed]
  28. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975-2977 (2006). [CrossRef] [PubMed]
  29. S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1, 424-431 (1997). [CrossRef] [PubMed]
  30. A. Mariampillai, B. A. Standish, N. R. Munce, C. Randall, G. Liu, J. Y. Jiang, A. E. Cable, I. A. Vitkin, and V. X. D. Yang, “Doppler optical cardiogram gated 2D color flow imaging at 1000 fps and 4D in vivo visualization of embryonic heart at 45 fps on a swept source OCT system,” Opt. Express 15, 1627-1638 (2007). [CrossRef] [PubMed]
  31. N. V. Iftimia, D. X. Hammer, R. P. Ferguson, M. Mujat, D. Vu, and A. A. Ferrante, “Dual-beam Fourier domain optical Doppler tomography of zebrafish,” Opt. Express 16, 13624-13636 (2008). [CrossRef] [PubMed]
  32. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007). [CrossRef] [PubMed]
  33. A. M. Davis, J. A. Izatt, and F. Rothenberg, “Quantitative measurement of blood flow dynamics in embryonic vasculature using spectral Doppler velocimetry,” Anat. Rec. (to be published).
  34. M. C. Fishman and K. R. Chien, “Fashioning the vertebrate heart: earliest embryonic decisions,” Development 124, 2099-2117 (1997). [PubMed]
  35. B. J. Martinsen, “Reference guide to the stages of chick heart embryology,” Dev. Dyn. 233, 1217-1237 (2005). [CrossRef] [PubMed]
  36. V. Hamburger and H. L. Hamilton, “A series of normal stages in the development of the chick embryo,” J. Morphol. 88, 49-92 (1951). [CrossRef]
  37. J. Männer, “Cardiac looping in the chick embryo: a morphological review with special reference to terminological and biomechanical aspects of the looping process,” Anat. Rec. 259, 248-262 (2000). [CrossRef] [PubMed]
  38. A. D. Person, S. E. Klewer, and R. B. Runyan, “Cell biology of cardiac cushion development,” Int. Rev. Cytol. 243, 287-335 (2005). [CrossRef] [PubMed]
  39. W. W. Burggren, “What is the purpose of the embryonic heart beat? Or how facts can ultimately prevail over physiological dogma,” Physiol. Biochem. Zool. 77, 333-345 (2004). [CrossRef] [PubMed]
  40. B. Hogers, M. C. De Ruiter, A. C. Gittenberger-de Goot, and R. E. Poelmann, “Extraembryonic venous obstructions lead to cardiovascular malformations and can be embryolethal,” Cardiovasc. Res. 41, 87-99 (1999). [CrossRef] [PubMed]
  41. K. Tobita and B. B. Keller, “Maturation of end-systolic stress-strain relations in chick embryonic myocardium,” Am. J. Physiol. Heart Circ. Physiol. 279, H216-H224 (2000). [PubMed]
  42. B. C. W. Groenendijk, B. P. Hierck, J. Vrolijk, M. Baiker, M. J. B. M. Pourquie, A. C. Gittenberger-de Groot, and R. E. Poelmann, “Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo,” Circ. Res. 96, 1291-1298 (2005). [CrossRef] [PubMed]
  43. S. H. Yun, G. Tearney, B. Bouma, B. Park, and J. de Boer, “High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength,” Opt. Express 11, 3598-3604 (2003). [CrossRef] [PubMed]
  44. S. Radhakrishnan, A. M. Rollins, J. E. Roth, S. Yazdanfar, V. Westphal, D. S. Bardenstein, and J. A. Izatt, “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. (Chicago) 119, 1179-1185 (2001).
  45. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251-6267 (2007). [CrossRef] [PubMed]
  46. Z. Chen, T. E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M. J. C. Van Gemart, and J. S. Nelson, “Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography,” Opt. Lett. 22, 1119-1121 (1997). [CrossRef] [PubMed]
  47. R. Leitgeb, L. Schmetterer, W. Drexler, A. Fercher, R. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11, 3116-3121 (2003). [CrossRef] [PubMed]
  48. L. Wang, Y. Wang, S. Guo, J. Zhang, M. Bachman, G. P. Li, and Z. Chen, “Frequency domain phase-resolved optical Doppler and Doppler variance tomography,” Opt. Commun. 242, 345-350 (2004). [CrossRef]
  49. D. C. Ghiglia and M. D. Pritt, Two Dimensional Phase Unwrapping, Theory, Algorithms, and Software (Wiley, 1998).
  50. D. C. Ghiglia, G. A. Mastin, and L. A. Romero, “Cellular-automata method for phase unwrapping,” J. Opt. Soc. Am. A 4, 267-280 (1987). [CrossRef]
  51. N. Hu and E. B. Clark, “Hemodynamics of the stage 12 to stage 29 chick embryo,” Circ. Res. 65, 1665-1670 (1989). [PubMed]
  52. J. T. Butcher, T. C. McQuinn, D. Sedmera, D. Turner, and R. R. Markwald, “Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition,” Circ. Res. 100, 1503-1511 (2007). [CrossRef] [PubMed]
  53. K. K. Linask and M. Vanauker, “A role for the cytoskeleton in heart looping,” ScientificWorldJournal 7, 280-298 (2007). [CrossRef] [PubMed]
  54. T. G. van Leeuwen, M. D. Kulkarni, S. Yazdanfar, A. M. Rollins, and J. A. Izatt, “High-flow-velocity and shear-rate imaging by use of color Doppler optical coherence tomography,” Opt. Lett. 24, 1584-1586 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited