OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 2 — Feb. 1, 2008
  • pp: 473–482

Interpretation of nondepolarizing Mueller matrices based on singular-value decomposition

Razvigor Ossikovski  »View Author Affiliations


JOSA A, Vol. 25, Issue 2, pp. 473-482 (2008)
http://dx.doi.org/10.1364/JOSAA.25.000473


View Full Text Article

Enhanced HTML    Acrobat PDF (165 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A product decomposition of a nondepolarizing Mueller matrix consisting of the sequence of three factors — a first linear retarder, a horizontal or vertical “retarding diattenuator,” and a second linear retarder — is proposed. Each matrix factor can be readily identified with one or two basic polarization devices such as partial polarizers and retardation waveplates. The decomposition allows for a straightforward interpretation and parameterization of an experimentally determined Mueller matrix in terms of an arrangement of polarization devices and their characteristic parameters: diattenuations, retardances, and axis azimuths. Its application is illustrated on an experimentally determined Mueller matrix.

© 2008 Optical Society of America

OCIS Codes
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization
(280.0280) Remote sensing and sensors : Remote sensing and sensors

ToC Category:
Physical Optics

History
Original Manuscript: March 26, 2007
Revised Manuscript: September 19, 2007
Manuscript Accepted: December 16, 2007
Published: January 30, 2008

Citation
Razvigor Ossikovski, "Interpretation of nondepolarizing Mueller matrices based on singular-value decomposition," J. Opt. Soc. Am. A 25, 473-482 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-2-473


Sort:  Year  |  Journal  |  Reset  

References

  1. A. Laskarakis, S. Logothetidis, E. Pavlopoulou, and M. Gioti, "Mueller matrix spectroscopic ellipsometry: formulation and application," Thin Solid Films 455-456, 43-49 (2004). [CrossRef]
  2. C. Chen, I. An, G. M. Ferreira, N. J. Podraza, J. A. Zapien, and R. W. Collins, "Multichannel Mueller matrix ellipsometer based on dual rotating compensator principle," Thin Solid Films 455-456, 14-23 (2004). [CrossRef]
  3. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, "Mueller polarimetric imaging system with liquid crystals," Appl. Opt. 43, 2824-2832 (2004). [CrossRef] [PubMed]
  4. N. A. Beaudry, Y. Zhao, and R. A. Chipman, "Dielectric tensor measurement from a single Mueller matrix image," J. Opt. Soc. Am. A 24, 814-824 (2007). [CrossRef]
  5. R. A. Synowicki, J. N. Hilfiker, and P. K. Whitman, "Mueller matrix ellipsometry study of uniaxial deuterated potassium dihydrogen phosphate (DKDP)," Thin Solid Films 455-456, 624-627 (2004). [CrossRef]
  6. J. Gospodyn and J. C. Sit, "Characterization of dielectric columnar thin films by variable angle Mueller matrix and spectroscopic ellipsometry," Opt. Mater. (Amsterdam, Neth.) 29, 318-325 (2006). [CrossRef]
  7. N. J. Podraza, C. Chen, I. An, G. M. Fereira, P. I. Rovira, R. Messier, and R. W. Collins, "Analysis of the optical properties and structure of sculptured thin films from spectroscopic Mueller matrix ellipsometry," Thin Solid Films 455-456, 571-575 (2004). [CrossRef]
  8. J. E. Wolfe and R. A. Chipman, "Polarimetric characterization of liquid-crystal-on-silicon panels," Appl. Opt. 45, 1688-1703 (2006). [CrossRef] [PubMed]
  9. J. W. Hovenier, "Structure of a general pure Mueller matrix," Appl. Opt. 33, 8318-8324 (1994). [CrossRef] [PubMed]
  10. Z.-F. Xing, "On the deterministic and non-deterministic Mueller matrix," J. Mol. Opt. 39, 461-484 (1992). [CrossRef]
  11. D. G. M. Anderson and R. Barakat, "Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix," J. Opt. Soc. Am. A 11, 2305-2319 (1994). [CrossRef]
  12. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1989), Chap. 2, p. 149; Appendix, pp. 488, 491.
  13. P. Lancaster and M. Tismenetsky, The Theory of Matrices (Academic, 1985), Chap. 5, pp. 190,192.
  14. C. Whitney, "Pauli algebraic operators in polarization optics," J. Opt. Soc. Am. 61, 1207-1213 (1971). [CrossRef]
  15. S.-Y. Lu and R. A. Chipman, "Homogeneous and inhomogeneous Jones matrices," J. Opt. Soc. Am. A 11, 766-773 (1994). [CrossRef]
  16. J. J. Gil and E. Bernabeu, "Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix," Optik (Stuttgart) 76, 67-71 (1987).
  17. S.-Y. Lu and R. A. Chipman, "Interpretation of Mueller matrices based on polar decomposition," J. Opt. Soc. Am. A 13, 1106-1113 (1996). [CrossRef]
  18. R. Barakat, "Conditions for the physical realizability of polarization matrices characterizing passive systems," J. Mod. Opt. 34, 1535-1544 (1987). [CrossRef]
  19. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in Pascal (Cambridge U. Press, 1989), Chap. 11, pp. 390-391.
  20. S. R. Cloude, "Conditions for the physical realizability of matrix operators in polarimetry," Proc. SPIE 1166, 177-185 (1989).
  21. R. Ossikovski, A. De Martino, and S. Guyot, "Forward and reverse product decompositions of depolarizing Mueller matrices," Opt. Lett. 32, 689-691 (2007). [CrossRef] [PubMed]
  22. R. Ossikovski, E. Garcia-Caurel, and A. De Martino, "Product decompositions of experimentally determined non-depolarizing Mueller matrices," Phys. Status. Solidi A (to be published).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited