OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 3 — Mar. 1, 2008
  • pp: 558–565

Segmented coupled-wave analysis of a curved wire-grid polarizer

Donghyun Kim and Eunji Sim  »View Author Affiliations


JOSA A, Vol. 25, Issue 3, pp. 558-565 (2008)
http://dx.doi.org/10.1364/JOSAA.25.000558


View Full Text Article

Enhanced HTML    Acrobat PDF (720 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performance of a wire-grid polarizer (WGP) on a curved surface was investigated with a simple numerical model. The computation model combines rigorous coupled-wave analysis with piecewise linear segmentation that approximates a curved surface for two bending configurations. A curvature-induced Rayleigh anomaly is found to be the main performance degradation mechanism that reduces transmittance and polarization contrast. A WGP on a curved surface is more likely to incur the Rayleigh anomaly with smaller surface curvature. For a given curvature, a larger WGP is more vulnerable. Effects of polar and azimuthal incidence angles were also analyzed. Suggestions were made in regard to a WGP design that minimizes the performance degradation.

© 2008 Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.5440) Optical devices : Polarization-selective devices
(260.5430) Physical optics : Polarization

ToC Category:
Optical Devices

History
Original Manuscript: June 29, 2007
Revised Manuscript: November 28, 2007
Manuscript Accepted: December 16, 2007
Published: February 4, 2008

Citation
Donghyun Kim and Eunji Sim, "Segmented coupled-wave analysis of a curved wire-grid polarizer," J. Opt. Soc. Am. A 25, 558-565 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-3-558


Sort:  Year  |  Journal  |  Reset  

References

  1. R. Tyan, A. Salvekar, H. Chou, C. Cheng, A. Scherer, F. Xu, P. C. Sun, and Y. Fainman, "Design, fabrication and characterization of form-birefringent multilayer polarizing beam splitter," J. Opt. Soc. Am. A 14, 1627-1636 (1997). [CrossRef]
  2. E. Chen and S. Y. Chou, "Polarimetry of thin metal transmission gratings in the resonance region and its impact on the response of metal-semiconductor-metal photodetectors," Appl. Phys. Lett. 70, 2673-2675 (1997). [CrossRef]
  3. H. Tamada, T. Doumuki, T. Yamaguchi, and S. Matsumoto, "Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-μm-wavelength band," Opt. Lett. 22, 419-421 (1997). [CrossRef] [PubMed]
  4. M. H. Smith, J. D. Howe, J. B. Woodruff, M. A. Miller, G. R. Ax, T. E. Petty, and E. A. Sornsin, "Multispectral infrared Stokes imaging polarimeter," Proc. SPIE 3754, 137-143 (1999). [CrossRef]
  5. D. Kim, C. Warde, K. Vaccaro, and C. Woods, "Imaging multispectral polarimetric sensor: single-pixel design and fabrication," Appl. Opt. 42, 3756-3764 (2003). [CrossRef] [PubMed]
  6. D. Kim and K. Burke, "Design of a grating-based thin film filter for broadband spectro-polarimetry," Appl. Opt. 42, 6321-6326 (2003). [CrossRef] [PubMed]
  7. H.-L. Kuo, C.-H. Chiu, and P.-C. Chen, "A novel wire grid polarizer," in 2004 SID International Symposium, Seminar, and Exhibition Digest (Society for Information Display, 2004), pp. 732-735. [CrossRef]
  8. S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, "Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography," Nanotechnology 16, 1874-1877 (2005). [CrossRef]
  9. D. Kim, "Polarization characteristics of a wire-grid polarizer in a rotating platform," Appl. Opt. 44, 1366-1371 (2005). [CrossRef] [PubMed]
  10. S. Arnold, E. Gardner, D. Hansen, and R. Perkins, "An improved polarizing beamsplitter LCOS projection display based on wire-grid polarizers," in 2001 SID International Symposium, Seminar, and Exhibition Digest (Society for Information Display, 2001), pp. 1282-1285. [CrossRef]
  11. X.-J. Yu and H.-S. Kwok, "Application of wire-grid polarizers to projection displays," Appl. Opt. 42, 6335-6341 (2003). [CrossRef] [PubMed]
  12. X.-D. Mi, D. Kessler, L. W. Tutt, and L. Weller-Brophy, "Low-fill-factor wire-grid polarizers for LCD backlighting," in 2005 SID International Symposium, Seminar, and Exhibition Digest (Society for Information Display, 2005), pp. 1004-1007. [CrossRef]
  13. S. J. Lee, M. J. Kim, H. J. Min, H. S. Kim, S. C. Kang, S. E. Lee, K. H. Park, J. H. Oh, S. H. Kim, D. H. Kang, J. S. Choi, S. M. Hong, J. H. Hur, and J. Jang, "A wire grid stereoscopic display," in 2006 SID International Symposium, Seminar, and Exhibition Digest (Society for Information Display, 2006), pp. 89-92. [CrossRef]
  14. K.-H. Liu, C.-C. Liao, Y.-C. Hung, and C.-H. Chan, "A high contrast micro-cell liquid crystal display film," in 2004 SID International Symposium, Seminar, and Exhibition Digest (Society for Information Display, 2004), pp. 610-613. [CrossRef]
  15. Y. Fujisaki, H. Sato, Y. Inoue, H. Fujikake, and T. Kurita, "Fast-response flexible LCD panel driven by a low-voltage organic TFT," in 2006 SID International Symposium, Seminar, and Exhibition Digest (Society for Information Display, 2006), pp. 119-122. [CrossRef]
  16. J. A. Castellano, "Modifying light," Am. Sci. 94, 438-445 (2006). [CrossRef]
  17. T. Sergan, M. Lavrentovich, J. Kelly, E. Gardner, and D. Hansen, "Measurement and modeling of optical performance of wire grids and liquid-crystal displays utilizing grid polarizers," J. Opt. Soc. Am. A 19, 1872-1885 (2002). [CrossRef]
  18. N. Bokor and N. Davidson, "Aberration-free imaging with an aplanatic curved diffractive element," Appl. Opt. 40, 5825-5829 (2001). [CrossRef]
  19. N. Bokor and N. Davidson, "Ideal collimation, concentration, and imaging with curved diffractive optical elements," Rev. Sci. Instrum. 76, 111101 (2005). [CrossRef]
  20. H. Liu, Z. Lu, F. Li, Y. Xie, S. Kan, and S. Wang, "Using curved hologram to test large-aperture convex surface," Opt. Express 12, 3251-3256 (2004). [CrossRef] [PubMed]
  21. H. Liu, Z. Lu, F. Li, and Q. Sun, "Design of a novel hologram for full measurement of large and deep convex aspheric surfaces," Opt. Express 15, 3120-3126 (2007). [CrossRef] [PubMed]
  22. A. E. Siegman, "ABCD-matrix elements for a curved diffraction grating," J. Opt. Soc. Am. A 2, 1793 (1985). [CrossRef]
  23. F. A. Sadjadi and C. S. L. Chun, "Passive polarimetric IR target classification," IEEE Trans. Aerosp. Electron. Syst. 37, 740-751 (2001). [CrossRef]
  24. T. Abboud and H. Ammari, "Diffraction at a curved grating: approximation by an infinite plane grating," J. Math. Anal. Appl. 202, 1076-1100 (1996). [CrossRef]
  25. M. A. Jensen and G. P. Nordin, "Finite-aperture wire grid polarizers," J. Opt. Soc. Am. A 17, 2191-2198 (2000). [CrossRef]
  26. M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of metallic surface-relief gratings," J. Opt. Soc. Am. A 3, 1780-1787 (1986). [CrossRef]
  27. D. Kim, "Performance uniformity analysis of a wire-grid polarizer in imaging polarimetry," Appl. Opt. 44, 5398-5402 (2005). [CrossRef] [PubMed]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  29. Lord Rayleigh, "Note on the remarkable case of diffraction spectra described by Prof. Wood," Philos. Mag. 14, 60-65 (1907).
  30. P. Yeh, "Extended Jones matrix method," J. Opt. Soc. Am. 72, 507-513 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited