OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 3 — Mar. 1, 2008
  • pp: 667–675

Three-dimensional analysis of cylindrical microresonators based on the aperiodic Fourier modal method

Andrea Armaroli, Alain Morand, Pierre Benech, Gaetano Bellanca, and Stefano Trillo  »View Author Affiliations

JOSA A, Vol. 25, Issue 3, pp. 667-675 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (479 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We develop a 3D vectorial description of microresonators of the microdisk and microring types based on the aperiodic Fourier modal method. Such a rigorous coupled-wave analysis allows us to evaluate accurately the resonant wavelengths, the quality factor, and the full profile of whispering-gallery modes. The results are compared with 2D (effective index) as well as 3D finite-difference time domain calculations.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(230.1150) Optical devices : All-optical devices
(230.3120) Optical devices : Integrated optics devices
(230.5750) Optical devices : Resonators

ToC Category:
Optical Devices

Original Manuscript: August 3, 2007
Revised Manuscript: December 18, 2007
Manuscript Accepted: December 21, 2007
Published: February 13, 2008

Andrea Armaroli, Alain Morand, Pierre Benech, Gaetano Bellanca, and Stefano Trillo, "Three-dimensional analysis of cylindrical microresonators based on the aperiodic Fourier modal method," J. Opt. Soc. Am. A 25, 667-675 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839-846 (2003). [CrossRef] [PubMed]
  2. A. M. Matsko and V. S. Ilchenko, “Optical resonators with whispering-gallery modes part I: basics,” IEEE J. Sel. Top. Quantum Electron. 12, 3-14 (2006). [CrossRef]
  3. T. M. Benson, S. V. Boriskina, P. Sewell, A. Vukovic, S. C. Greedy, and A. I. Nosich, “Micro-optical resonators for microlasers and integrated optoelectronics,” in Frontiers in Planar Lightwave Circuit Technology: Design, Simulation and Fabrication, S.Janz, J.Ctyroký, and S.Tanez, eds. (Springer, 2006), pp. 39-70. [CrossRef]
  4. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415, 621-623 (2002). [CrossRef] [PubMed]
  5. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24, 711-713 (1999). [CrossRef]
  6. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925-928 (2003). [CrossRef] [PubMed]
  7. P. Bienstman, S. Selleri, L. Rosa, H. P. Uranus, W. C. I. Hopman, R. Costa, A. Melloni, I. C. Andreani, J. P. Hugonin, P. Lalanne, D. Pinto, S. S. A. Obayya, M. Dems, and K. Panajotov, “Modelling leaky photonic wires: a mode solver comparison,” Opt. Quantum Electron. 38, 731-759 (2006). [CrossRef]
  8. T. M. Benson, S. V. Boriskina, P. Sewell, A. Vukovic, S. C. Greedy, and A. I. Nosich, “Microcavities: an inspiration for advanced modelling techniques,” in Proceedings of the 7th International Conference Transparent Optical Networks (ICTON) (IEEE, 2005), pp. 272-275. [CrossRef]
  9. A. Morand, Y. Zhang, B. Martin, K. P. Huy, D. Amans, P. Benech, J. Verbert, E. Hadji, and J. M. Fédéli, “Ultra-compact microdisk resonator filters on SOI substrate,” Opt. Express 14, 12814-12821 (2006). [CrossRef] [PubMed]
  10. L. Prkna, M. Hubálek, and J. Ctyroký, “Field modeling of circular microresonators by film mode matching,” IEEE J. Sel. Top. Quantum Electron. 11, 217-223 (2005). [CrossRef]
  11. R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Ctyroký, “Cylindrical integrated optical microresonators: modeling by 3-D vectorial coupled mode theory,” Opt. Commun. 256, 46-67 (2005). [CrossRef]
  12. Ph. Lalanne, J. P. Hugonin, and J. S. Gerard, “Electromagnetic study of the quality factor of pillar microcavities in the small diameter limit,” Appl. Phys. Lett. 84, 4726-4728 (2004). [CrossRef]
  13. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995). [CrossRef]
  14. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092-1094 (2000). [CrossRef]
  15. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996). [CrossRef]
  16. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  17. F. L. Teixeira and W. C. Chew, “Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates,” IEEE Microw. Guid. Wave Lett. 7, 371-373 (1997). [CrossRef]
  18. J. P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844-1849 (2005). [CrossRef]
  19. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024-1035 (1996). [CrossRef]
  20. K. Phan-Huy, A. Morand, D. Amans, and P. Benech, “Analytical study of the whispering-gallery mode in two-dimensional microgear cavity using coupled-mode theory,” J. Opt. Soc. Am. B 22, 1793-1803 (2005). [CrossRef]
  21. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, 1984).
  22. A. S. Sudbø, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Pure Appl. Opt. 2, 211-233 (1993). [CrossRef]
  23. V. A. Labay and J. Bornemann, “Matrix singular value decomposition for pole-free solutions of homogeneous matrix equations as applied to numerical modeling methods,” IEEE Microw. Guid. Wave Lett. 2, 49-51 (1992). [CrossRef]
  24. E. Anemogiannis and E. N. Glytsis, “Multilayer waveguides: efficient numerical analysis of general structures,” J. Lightwave Technol. 10, 1344-1351 (1992). [CrossRef]
  25. E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, “Efficient solution of eigenvalue equations of optical waveguide structures,” J. Lightwave Technol. 12, 2080-2084 (1994). [CrossRef]
  26. O. Conradi, “Determining the resonator wavelength of VCSELs by Cauchy's integral formula,” Opt. Quantum Electron. 31, 1047-1058 (1999). [CrossRef]
  27. J. H. Mathews, “Nelder-Mead search for a minimum,” http://math.fullerton.edu/mathews/n2003/NelderMeadMod.html.
  28. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House, 2005).
  29. A. Mandelshtam and H. S. Taylor, “Harmonic inversion of time signals,” J. Chem. Phys. 107, 6756-6769 (1997), implemented by S. G. Johnson, http://ab-initio.mit.edu/wiki/index.php/Harminv. [CrossRef]
  30. P. Bienstmann and R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523-540 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited