## Efficient computation of joint fractional Fourier domain signal representation

JOSA A, Vol. 25, Issue 3, pp. 765-772 (2008)

http://dx.doi.org/10.1364/JOSAA.25.000765

Enhanced HTML Acrobat PDF (626 KB)

### Abstract

A joint fractional domain signal representation is proposed based on an intuitive understanding from a time-frequency distribution of signals that designates the joint time and frequency energy content. The joint fractional signal representation (JFSR) of a signal is so designed that its projections onto the defining joint fractional Fourier domains give the modulus square of the fractional Fourier transform of the signal at the corresponding orders. We derive properties of the JFSR, including its relations to quadratic time-frequency representations and fractional Fourier transformations, which include the oblique projections of the JFSR. We present a fast algorithm to compute radial slices of the JFSR and the results are shown for various signals at different fractionally ordered domains.

© 2008 Optical Society of America

**OCIS Codes**

(070.0070) Fourier optics and signal processing : Fourier optics and signal processing

(070.2575) Fourier optics and signal processing : Fractional Fourier transforms

**ToC Category:**

Fourier Optics and Signal Processing

**History**

Original Manuscript: August 3, 2007

Revised Manuscript: December 19, 2007

Manuscript Accepted: January 9, 2008

Published: February 21, 2008

**Citation**

Lutfiye Durak, Ahmet Kemal Özdemir, and Orhan Arikan, "Efficient computation of joint fractional Fourier domain signal representation," J. Opt. Soc. Am. A **25**, 765-772 (2008)

http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-3-765

Sort: Year | Journal | Reset

### References

- F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time-frequency signal representations,” IEEE Signal Process. Mag. 9, 21-67 (1992). [CrossRef]
- L. Cohen, Time-Frequency Analysis (Prentice Hall, 1995).
- S. Mann and S. Haykin, “The chirplet transform: physicalconsiderations,” IEEE Trans. Signal Process. 43, 2745-2761 (1995). [CrossRef]
- R. G. Baraniuk and D. L. Jones, “Matrix formulation of the chirplet transform,” IEEE Trans. Signal Process. 44, 3129-3135 (1996). [CrossRef]
- R. G. Baraniuk, “Beyond time-frequency analysis: energy density in one and many dimensions,” IEEE Trans. Signal Process. 46, 2305-2314 (1998). [CrossRef]
- O. Akay and G. F. Boudreaux-Bartels, “Joint fractional signal representations,” J. Franklin Inst. 337, 365-378 (2000). [CrossRef]
- L. B. Almedia, “The fractional Fourier transform and time-frequency representations,” IEEE Trans. Signal Process. 42, 3084-3091 (1994). [CrossRef]
- H. Ozaktas and O. Aytür, “Fractional Fourier domains,” Signal Process. 46, 119-124 (1995). [CrossRef]
- H. M. Ozaktas, Z. Zalevsky, and M. A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, 2000).
- H. M. Ozaktas, B. Barshan, D. Mendlovic, and L. Onural, “Convolution, filtering, and multiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547-559 (1994). [CrossRef]
- B. Barshan, M. A. Kutay, and H. M. Ozaktas, “Optimal filtering with linear canonical transformations,” Opt. Commun. 135, 32-36 (1997). [CrossRef]
- M. A. Kutay, H. M. Ozaktas, O. Arikan, and L. Onural, “Optimal filtering in fractional Fourier domains,” IEEE Trans. Signal Process. 45, 1129-1143 (1997). [CrossRef]
- M. A. Kutay and H. M. Ozaktas, “Optimal image restoration with the fractional Fourier transform,” J. Opt. Soc. Am. A 15, 825-833 (1998). [CrossRef]
- M. F. Erden and H. M. Ozaktas, “Synthesis of general linear systems with repeated filtering in consecutive fractional Fourier domains,” J. Opt. Soc. Am. A 15, 1647-1657 (1998). [CrossRef]
- A. K. Özdemir and O. Arikan, “Efficient computation of the ambiguity function and the Wigner distribution on arbitrary line segments,” IEEE Trans. Signal Process. 49, 381-393 (2001). [CrossRef]
- L. Durak and O. Arikan, “Short-time Fourier transform: two fundamental properties and an optimal implementation,” IEEE Trans. Signal Process. 51, 1231-1242 (2003). [CrossRef]
- V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241-265 (1980). [CrossRef]
- L. M. Bernardo and O. D. D. Soares, “Fractional Fourier transform and optical systems,” Opt. Commun. 110, 517-522 (1994). [CrossRef]
- H. M. Ozaktas and D. Mendlovic, “Fractional Fourier optics,” J. Opt. Soc. Am. A 12, 743-751 (1995). [CrossRef]
- O. Aytür and H. Ozaktas, “Non-orthogonal domains in phase space of quantum optics and their relation to fractional Fourier transform,” Opt. Commun. 120, 166-170 (1995). [CrossRef]
- A. W. Lohmann and B. H. Soffer, “Relationships between the Radon-Wigner and fractional Fourier transforms,” J. Opt. Soc. Am. A 11, 1798-1801 (1994). [CrossRef]
- S. Shinde and V. M. Gadre, “An uncertainty principle for real signals in the fractional Fourier transform domain,” IEEE Trans. Signal Process. 49, 2545-2548 (2001). [CrossRef]
- H. M. Ozaktas, O. Arikan, M. A. Kutay, and G. Bozdagi, “Digital computation of the fractional Fourier transform,” IEEE Trans. Signal Process. 44, 2141-2150 (1996). [CrossRef]
- L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its applications,” Bell Syst. Tech. J. 48, 1249-1292 (1969).
- A. K. Ozdemir, S. Karakas, E. D. Cakmak, D. I. Tufekci, and O. Arikan, “Time-frequency component analyzer and its application to analysis of brains oscillatory activity,” J. Neurosci. Methods 145, 107-125 (2005). [CrossRef] [PubMed]
- http://www.dsp.rice.edu/software/TFA/RGK/BAT/batsig.bin.Z.

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.