OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 3 — Mar. 1, 2008
  • pp: 785–790

Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles

Guang Chen, Ping Yang, and George W. Kattawar  »View Author Affiliations

JOSA A, Vol. 25, Issue 3, pp. 785-790 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (749 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The pseudospectral time-domain (PSTD) method is a powerful approach for computing the single-scattering properties of arbitrarily shaped particles with small-to-moderate-sized parameters. In the PSTD method, the spatial derivative approximation based on the spectral method is more accurate than its counterpart based on the finite-difference technique. Additionally, the PSTD method can substantially diminish accumulated errors that increase with the spatial scale and temporal duration of simulation. We report on the application of the PSTD method to the scattering of light by nonspherical ice particles. The applicability of the PSTD method is validated against the Lorenz–Mie theory and the T-matrix method. The phase functions computed from the PSTD method and the Lorenz–Mie theory agree well for size parameters as large as 80. Furthermore, the PSTD code is also applied to the scattering of light by nonspherical ice crystals, namely, hollow hexagonal columns and aggregates, which are frequently observed in cirrus clouds. The phase functions computed from the PSTD method are compared with the counterparts computed from the finite-difference time-domain (FDTD) method for a size parameter of 20 and an incident wavelength of 3.7 μ m . The comparisons show good agreement between the two methods.

© 2008 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(290.1310) Scattering : Atmospheric scattering

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: November 15, 2007
Revised Manuscript: January 18, 2008
Manuscript Accepted: January 18, 2008
Published: February 22, 2008

Guang Chen, Ping Yang, and George W. Kattawar, "Application of the pseudospectral time-domain method to the scattering of light by nonspherical particles," J. Opt. Soc. Am. A 25, 785-790 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. P. Yang and K. N. Liou, “Light scattering and absorption by nonspherical ice crystals,” in Light Scattering Reviews: Single and Multiple Light Scattering, A.Kokhanovsky, ed. (Springer-Praxis, 2006), pp. 31-71.
  2. A. J. Heymsfield and J. Iaquinta, “Cirrus crystal terminal velocities,” J. Atmos. Sci. 5, 916-938 (2000). [CrossRef]
  3. T. Wriedt, “A review of elastic light scattering theories,” Part. Part. Syst. Charact. 15, 67-74 (1998). [CrossRef]
  4. F. M. Kahnert, “Numerical methods in electromagnetic scattering theory,” J. Quant. Spectrosc. Radiat. Transf. 79-80, 775-824 (2003). [CrossRef]
  5. M. I. Mishchenko, W. J. Wiscombe, J. W. Hovenier, and L. D. Travis, “Overview of scattering by nonspherical particles,” in Light Scattering by Nonspherical Particles: Theory, Measurements, and Geophysical Applications, M.I.Mishchenko, J.W.Hovenier, and L.D.Travis, eds. (Academic, 2000), pp. 29-60. [CrossRef]
  6. Y. Takano and K. N. Liou, “Solar radiative transfer in cirrus clouds. Part I. Single-scattering and optical properties of hexagonal ice crystals,” J. Atmos. Sci. 46, 3-19 (1989). [CrossRef]
  7. Y. Takano and K. N. Liou, “Radiative transfer in cirrus clouds. III. Light scattering by irregular ice crystals,” J. Atmos. Sci. 52, 818-837 (1995). [CrossRef]
  8. A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780-2788 (1993). [CrossRef] [PubMed]
  9. A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystal,” J. Atmos. Sci. 53, 2813-2825 (1996). [CrossRef]
  10. J. Iaquinta, H. Isaka, and P. Personne, “Scattering phase function of bullet rosette ice crystals,” J. Atmos. Sci. 52, 1401-1413 (1995). [CrossRef]
  11. P. Yang and K. N. Liou, “Single-scattering properties of complex ice crystals in terrestrial atmosphere,” Contrib. Atmos. Phys. 71, 223-248 (1998).
  12. K. Muinonen, “Scattering of light by crystals: a modified Kirchhoff approximation,” Appl. Opt. 28, 3044-3050 (1989). [CrossRef] [PubMed]
  13. P. Yang and K. N. Liou, “Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals,” Appl. Opt. 35, 6568-6584 (1996). [CrossRef] [PubMed]
  14. S. K. Yee, “Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  15. P. Yang and K. N. Liou, “Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space,” J. Opt. Soc. Am. A 13, 2072-2085 (1996). [CrossRef]
  16. W. Sun, Q. Fu, and Z. Chen, “Finite-difference time-domain solution of light scattering by dielectric particles with perfectly matched layer absorbing boundary conditions,” Appl. Opt. 38, 3141-3151 (1999). [CrossRef]
  17. Q. Fu, W. Sun, and P. Yang, “On model of scattering and absorption by cirrus nonspherical ice particles at thermal infrared wavelength,” J. Atmos. Sci. 56, 2937-2947 (1999). [CrossRef]
  18. P. Yang, G. W. Kattawar, K. N. Liou, and J. Q. Lu, “Comparison of Cartesian grid configurations for applying the finite-difference time domain method to electromagnetic scattering by dielectric particles,” Appl. Opt. 43, 4611-4624 (2004). [CrossRef] [PubMed]
  19. R. S. Brock, X.-H. Hu, P. Yang, and J. Q. Lu, “Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells,” Opt. Express 13, 5279-5292 (2005). [CrossRef] [PubMed]
  20. M. I. Mishchenko, “Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation,” Appl. Opt. 39, 1026-1031 (2000). [CrossRef]
  21. A. J. Baran, S. Haveman, P. N. Francis, and P. Yang, “A study of the absorption and extinction properties of hexagonal ice columns and plates in random and preferred orientation, using exact T-matrix theory and aircraft observations of cirrus,” J. Quant. Spectrosc. Radiat. Transfer 70, 505-518 (2001). [CrossRef]
  22. Q. H. Liu, “The PSTD algorithm: a time-domain method requiring only two cells per wavelength,” Microwave Opt. Technol. Lett. 15, 158-165 (1997). [CrossRef]
  23. Q. H. Liu, “The pseudospectral time-domain (PSTD) algorithm for acoustic waves in absorptive media,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1044-1055 (1998). [CrossRef]
  24. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185-200 (1994). [CrossRef]
  25. Q. H. Liu, “PML and PSTD algorithm for arbitrary lossy anisotropic media,” IEEE Microw. Guid. Wave Lett. 9, 48-50 (1999). [CrossRef]
  26. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  27. B. Tian and Q. H. Liu, “Nonuniform fast cosine transform and Chebyshev PSTD algorithm,” Prog. Electromagn. Res. 28, 259-279 (2000). [CrossRef]
  28. B. Yang, D. Gottlieb, and J. S. Hesthaven, “Spectral simulation of electromagnetic wave scattering,” J. Comput. Phys. 134, 216-230 (1997). [CrossRef]
  29. B. Yang and J. S. Hesthaven, “Multidomain pseudospectral computation of Maxwell's equations in 3-D general curvilinear coordinates,” Appl. Numer. Math. 33, 281-289 (2000). [CrossRef]
  30. J. W. Cooley and J. W. Tukey, “Algorithm for the machine computation of complex Fourier series,” Math. Comput. 19, 297-301 (1965). [CrossRef]
  31. X. Gao, M. S. Mirotznik, and D. W. Prather, “A method for introducing soft sources in the PSTD algorithm,” IEEE Trans. Antennas Propag. 52, 1665-1671 (2004). [CrossRef]
  32. G. X. Fan and Q. H. Liu, “Pseudospectral time-domain algorithm applied to electromagnetic scattering from electrically large objects,” Microwave Opt. Technol. Lett. 29, 123-125 (2001). [CrossRef]
  33. Z. S. Sacks, D. M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas Propag. 43, 1460-1463 (1995). [CrossRef]
  34. W. Sun, N. G. Loeb, and Q. Fu, “Finite-difference time domain solution of light scattering and absorption by particles in an absorbing medium,” Appl. Opt. 41, 5728-5743 (2002). [CrossRef] [PubMed]
  35. P. Yang, B.-C. Gao, B. A. Baum, Y. X. Hu, W. J. Wiscombe, M. I. Mishchenko, D. M. Winker, and S. L. Nasiri, “Asymptotic solutions for optical properties of large particles with strong absorption,” Appl. Opt. 40, 1532-1547 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited