OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 3 — Mar. 1, 2008
  • pp: 791–795

Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice

Dingshan Gao, Zhiping Zhou, and David S. Citrin  »View Author Affiliations

JOSA A, Vol. 25, Issue 3, pp. 791-795 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (666 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The photonic crystal structure with parallelogram lattice, capable of bending a self-collimated wave with free angles and partial bandgap reflection, is presented. The equifrequency contours show that the direction of the collimation wave can be turned by tuning the angle between the two basic vectors of the lattice. Acute, right, and obtuse angles of collimating waveguide bends have been realized by arc lattices of parallelogram photonic crystals. Moreover, partial bandgap reflection of the parallelogram lattice photonic crystals is validated from the equifrequency contours and the projected band structures. A waveguide taper based on this partial bandgap reflection is also designed and proved to have above 85% transmittance over a very wide operating bandwidth of 180 nm .

© 2008 Optical Society of America

OCIS Codes
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(130.5296) Integrated optics : Photonic crystal waveguides

ToC Category:
Integrated Optics

Original Manuscript: October 22, 2007
Manuscript Accepted: January 22, 2008
Published: February 25, 2008

Dingshan Gao, Zhiping Zhou, and David S. Citrin, "Self-collimated waveguide bends and partial bandgap reflection of photonic crystals with parallelogram lattice," J. Opt. Soc. Am. A 25, 791-795 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. A. Bruyant, G. Lérondel, P. J. Reece, and M. Gal, “All-silicon omnidirectional mirrors based on one-dimensional photonic crystals,” Appl. Phys. Lett. 82, 3227-3229 (2003). [CrossRef]
  2. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62, 4488-4492 (2000). [CrossRef]
  3. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212-8222 (2000). [CrossRef]
  4. M. Loncar, T. Doll, J. Vuckovic, and A. Scherer, “Design and fabrication of silicon photonic crystal optical waveguides,” J. Lightwave Technol. 18, 1402-1411 (2000). [CrossRef]
  5. Y. Akahane, T. Asano, and B. S. Song, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature (London) 425, 944-947 (2003). [CrossRef]
  6. H. Hirayama, “Novel surface emitting laser diode using photonic band-gap crystal cavity,” Appl. Phys. Lett. 69, 791-793 (1996). [CrossRef]
  7. Y. Akahane, M. Mochizuki, T. Asano, Y. Tanaka, and S. Noda, “Design of a channel drop filter by using a donor-type cavity with high-quality factor in a two-dimensional photonic crystal slab,” Appl. Phys. Lett. 82, 1341-1343 (2003). [CrossRef]
  8. M. Qiu and B. Jaskorzynska, “Design of a channel drop filter in a two-dimensional triangular photonic crystal,” Appl. Phys. Lett. 83, 1074-1076 (2003). [CrossRef]
  9. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, “Self-collimating phenomena in photonic crystals,” Appl. Phys. Lett. 74, 1212-1214 (1999). [CrossRef]
  10. J. Witzens, M. Loncar, and A. Scherer, “Self-collimation in planar photonic crystals,” IEEE J. Sel. Top. Quantum Electron. 8, 1246-1257 (2002). [CrossRef]
  11. S. Shi, A. Sharkawy, C. Chen, D. M. Pustai, and D. W. Prather, “Dispersion-based beam splitter in photonic crystals,” Opt. Lett. 29, 617-619 (2004). [CrossRef] [PubMed]
  12. V. Zabelin, L. A. Dunbar, N. Le Thomas, R. Houdré, M. V. Kotlyar, L. O'Faolain, and T. F. Krauss, “Self-collimating photonic crystal polarization beam splitter,” Opt. Lett. 32, 530-532 (2007). [CrossRef] [PubMed]
  13. D. W. Prather, S. Shi, D. M. Pustai, C. Chen, S. Venkataraman, A. Sharkawy, G. J. Schneider, and J. Murakowski, “Dispersion-based optical routing in photonic crystals,” Opt. Lett. 29, 50-52 (2004). [CrossRef] [PubMed]
  14. C. Chen, A. Sharkawy, D. Pustai, S. Shi, and D. Prather, “Optimizing bending efficiency of self-collimated beams in non-channel planar photonic crystal waveguides,” Opt. Express 11, 3153-3159 (2003). [CrossRef] [PubMed]
  15. S. G. Lee, S. S. Oh, J. E. Kim, H. Y. Park, and C. S. Kee, “Line-defect-induced bending and splitting of self-collimated beams in two-dimensional photonic crystals,” Appl. Phys. Lett. 87, 181106 (2005). [CrossRef]
  16. X. Yu, “Bends and splitters for self-collimated beams in photonic crystals,” Appl. Phys. Lett. 83, 3251-3253 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited