OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 3 — Mar. 1, 2008
  • pp: 823–827

Phase and interference properties of optical vortex beams

John Vickers, Matt Burch, Reeta Vyas, and Surendra Singh  »View Author Affiliations


JOSA A, Vol. 25, Issue 3, pp. 823-827 (2008)
http://dx.doi.org/10.1364/JOSAA.25.000823


View Full Text Article

Enhanced HTML    Acrobat PDF (492 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Laguerre–Gauss vortex beams carrying different topological charges are generated from Hermite–Gauss laser beams emitted by a gas laser, and their phase properties are explored by studying their interference with a plane wave. Interference of two Laguerre–Gauss vortex beams carrying equal but opposite topological charge is also studied by using a modified Mach–Zehnder interferometer. Experimentally recorded intensity profiles are in good agreement with the theoretically expected profiles.

© 2008 Optical Society of America

OCIS Codes
(140.3300) Lasers and laser optics : Laser beam shaping
(260.3160) Physical optics : Interference
(140.3295) Lasers and laser optics : Laser beam characterization
(260.6042) Physical optics : Singular optics

ToC Category:
Physical Optics

History
Original Manuscript: November 30, 2007
Manuscript Accepted: January 8, 2008
Published: February 27, 2008

Citation
John Vickers, Matt Burch, Reeta Vyas, and Surendra Singh, "Phase and interference properties of optical vortex beams," J. Opt. Soc. Am. A 25, 823-827 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-3-823


Sort:  Year  |  Journal  |  Reset  

References

  1. H. Kogelnik and T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550-1567 (1966). [CrossRef] [PubMed]
  2. A. E. Siegman, Lasers (University Science Books, 1986), Chap. 16.
  3. P. W. Milonni and J. H. Eberly, Lasers (Wiley, 1988), Chap. 14.
  4. M. A. Bandres and J. C. Gutierrez-Vega, “Ince-Gaussian beams,” Opt. Lett. 29, 144-146 (2004). [CrossRef] [PubMed]
  5. M. A. Bandres, J. C. Gutirrez-Vega, and S. Chavez-Cerda, “Parabolic nondiffracting optical wavefields,” Opt. Lett. 29, 44-46 (2004). [CrossRef] [PubMed]
  6. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185-8189 (1992). [CrossRef] [PubMed]
  7. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” in Progress in Optics, E.Wolf, ed. (North-Holland, 1999) Vol. 39, pp. 291-372. [CrossRef]
  8. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810 (2003). [CrossRef] [PubMed]
  9. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, “Creation and manipulation of three-dimensional optically trapped structures,” Science 296, 1101-1103 (2002). [CrossRef] [PubMed]
  10. L. Paterson, M. P. MacDonald, J. Arlt, W. Sibbett, P. E. Bryant, and K. Dholakia, “Controlled rotation of optically trapped microscopic particles,” Science 292, 912-914 (2001). [CrossRef] [PubMed]
  11. K. T. Kapale and J. P. Dowling, “Vortex phase qubit: generating arbitrary counter-rotating superposition in Bose-Einstein condensates via optical angular momentum beams,” Phys. Rev. Lett. 95, 173601 (2005). [CrossRef] [PubMed]
  12. G. A. Swartzlander, “Peering into darkness with a vortex spatial filter,” Opt. Lett. 26, 497-499 (2001). [CrossRef]
  13. A. Mair, A. Vaziri, G. Weighs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313-316 (2001). [CrossRef] [PubMed]
  14. S. Roychowdhury, V. K. Jaiswal, and R. P. Singh, “Implementing controlled NOT gate with optical vortex,” Opt. Commun. 236, 419-424 (2004). [CrossRef]
  15. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123-132 (1993). [CrossRef]
  16. M. W. Beijersbergen, R. P. C. Coerwinkel, M. Kristensen, and J. P. Woerdman, “Helical-wavefront laser beams produced with a spiral phase plate,” Opt. Commun. 112, 321-327 (1994). [CrossRef]
  17. H. He, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms,” J. Mod. Opt. 42, 217-223 (1995). [CrossRef]
  18. N. R. Heckenberg, R. McDuff, C. P. Smith, H. Rubinsztein-Dunlop, and M. J. Wegener, “Laser beams with phase singularities,” Opt. Quantum Electron. 24, S951-S962 (1992). [CrossRef]
  19. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207, 169-175 (2002). [CrossRef]
  20. C. H. J. Schmitz, K. Uhrig, J. P. Spatz, and J. E. Curtis, “Tuning the orbital angular momentum in optical vortex beams,” Opt. Express 14, 6604-6612 (2006). [CrossRef] [PubMed]
  21. R. P. Singh and S. Roychowdhury, “Non-conservation of topological charge: experiment with optical vortices,” J. Mod. Opt. 51, 177-181 (2004).
  22. M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre-Gaussian laser modes,” Am. J. Phys. 64, 77-82 (1996). [CrossRef]
  23. Chr. Tamm and C. O. Weiss, “Bistability and optical switching of spatial patterns in a laser,” J. Opt. Soc. Am. B 7, 1034-1038 (1990). [CrossRef]
  24. E. Abramochkin and V. Volostnikov, “Beam transformation and nontransformed beams,” Opt. Commun. 83, 123-127 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited