OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 930–937

Integral equation formulation for reflection by a mirror

Henk F. Arnoldus  »View Author Affiliations


JOSA A, Vol. 25, Issue 4, pp. 930-937 (2008)
http://dx.doi.org/10.1364/JOSAA.25.000930


View Full Text Article

Enhanced HTML    Acrobat PDF (137 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

When light is incident on a mirror, it induces a current density on its surface. This surface current density emits radiation, which is the observed reflected field. We consider a monochromatic incident field with an arbitrary spatial dependence, and we derive an integral equation for the Fourier-transformed surface current density. This equation contains the incident electric field at the surface as an inhomogeneous term. The incident field, emitted by a source current density in front of the mirror, is then represented by an angular spectrum, and this leads to a solution of the integral equation. From this result we derive a relation between the surface current density and the current density of the source. It is shown with examples that this approach provides a simple method for obtaining the surface current density. It is also shown that with the solution of the integral equation, an image source can be constructed for any current source, and as illustration we construct the images of electric and magnetic dipoles and the mirror image of an electric quadrupole. By applying the general solution for the surface current density, we derive an expression for the reflected field as an integral over the source current distribution, and this may serve as an alternative to the method of images.

© 2008 Optical Society of America

OCIS Codes
(260.2110) Physical optics : Electromagnetic optics
(080.1235) Geometric optics : Apparent images

ToC Category:
Physical Optics

History
Original Manuscript: January 10, 2008
Manuscript Accepted: February 14, 2008
Published: March 24, 2008

Citation
Henk F. Arnoldus, "Integral equation formulation for reflection by a mirror," J. Opt. Soc. Am. A 25, 930-937 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-4-930

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited