OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 938–946

Ultrasound-enhanced optical coherence tomography: improved penetration and resolution

Chuanyong Huang, Bin Liu, and Mark E. Brezinski  »View Author Affiliations

JOSA A, Vol. 25, Issue 4, pp. 938-946 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (625 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Increasing penetration remains one of the most important issues in optical coherence tomography (OCT) research, which we achieved with a parallel ultrasound beam. In addition to qualitative improvements of tissue imaging, quantitative improvements in resolution of up to 28 % ± 2 % was noted. At lower frequencies and energies the improvement occurred primarily by altering the detection of multiply scattered light (photon–phonon interaction), which was substantially greater in solids than in liquids (even though the liquid had the higher scattering coefficient). In conclusion, the use of an ultrasound beam with OCT appears the most effective means to date for increasing imaging penetration.

© 2008 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(110.7170) Imaging systems : Ultrasound
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(290.4210) Scattering : Multiple scattering

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: July 17, 2007
Revised Manuscript: December 18, 2007
Manuscript Accepted: January 7, 2008
Published: March 24, 2008

Virtual Issues
Vol. 3, Iss. 5 Virtual Journal for Biomedical Optics

Chuanyong Huang, Bin Liu, and Mark E. Brezinski, "Ultrasound-enhanced optical coherence tomography: improved penetration and resolution," J. Opt. Soc. Am. A 25, 938-946 (2008)

Sort:  Year  |  Journal  |  Reset  


  1. M. E. Brezinski Optical Coherence Tomography, Principle and Practice (Academic, 2006).
  2. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  3. M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical coherence tomography for optical biopsy: properties and demonstration of vascular pathology,” Circulation 93, 1206-1213 (1996). [PubMed]
  4. J. M. Herrmann, C. Pitris, B. E. Bouma, S. A. Boppart, C. A. Jesser, D. L. Stamper, J. G. Fujimoto, and M. E. Brezinski, “High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography,” J. Rheumatol. 26 (3), 627-635 (1999). [PubMed]
  5. C. Pitris, A. Goodman, S. A. Boppart, J. J. Libus, J. G. Fujimoto, and M. E. Brezinski, “High-resolution imaging of gynecologic neoplasms using optical coherence tomography,” Obstet. Gynecol. 93, 135-139 (1999). [PubMed]
  6. M. E. Brezinski, G. J. Tearney, S. A. Boppart, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, “Optical biopsy with optical coherencetomography: feasibility for surgical diagnostics,” J. Surg. Res. 71, 32-40 (1997). [CrossRef] [PubMed]
  7. M. E. Brezinski and J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185-1192 (1999). [CrossRef]
  8. B. Liu and M. E. Brezinski, “Theoretical and practical considerations on detection performance of time domain, Fourier domain, and swept source optical coherence tomography,” J. Biomed. Opt. 12, 044007 (2007). [CrossRef] [PubMed]
  9. J. M. Schmitt, A. Knuttel, and R. F. Bonner, “Measurement of optical properties of biological tissue by low coherence reflectometry,” Appl. Opt. 32, 6032-6042 (1993). [CrossRef] [PubMed]
  10. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography,” Rep. Prog. Phys. 66, 239-303 (2003). [CrossRef]
  11. L. Thrane, H. T. Yura, and P. E. Andersen, “Analysis of optical coherence tomography systems based on the extended Huygens-Fresnel principle,” J. Opt. Soc. Am. A 17, 484-490 (2000). [CrossRef]
  12. D. J. Smithies, T. Lindmo, C. Zhongping, J. S. Nelson, and T. E. Milner, “Signal attenuation and localization in optical coherence tomography studied by Monte Carlo simulation,” Phys. Med. Biol. 43, 2044-3025 (1998). [CrossRef]
  13. G. Yao and L. V. Wang, “Monte Carlo simulation of an optical coherence tomography signal in homogeneous turbid media,” Phys. Med. Biol. 44, 2307-2320 (1999). [CrossRef] [PubMed]
  14. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherencetomography using a frequency-tunable optical source,” Opt. Lett. 22, 340-342 (1997). [CrossRef] [PubMed]
  15. A. M. Rollins and J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484-1486 (1999). [CrossRef]
  16. J. O. Schenk and M. E. Brezinski, “Ultrasound induced improvement in optical coherence tomography (OCT) resolution,” Proc. Natl. Acad. Sci. U.S.A. 99, 9761-9764 (2002). [CrossRef] [PubMed]
  17. P. A. Edney and J. T. Walsh, “Acoustical modulation and photon-phonon scattering in optical coherence tomography,” Appl. Opt. 40, 6381-6388 (2001). [CrossRef]
  18. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto, “High-speed phase-and group-delay scanning with grating-based phase control delay line,” Opt. Lett. 22, 1811-1813 (1997). [CrossRef]
  19. G. J. Tearney, M. E. Brezinski, B. E. Bouma, S. A Boppart, C. Pitris, J. F. Southern, and J. G. Fujimoto, “In vivo endoscopic optical biopsy withoptical coherence tomography,” Science 276, 2037-2039 (1997). [CrossRef] [PubMed]
  20. E. Hecht, Hecht Optics (Addison-Wesley, 1998).
  21. A. Korpel, Acousto-Optics (Marcel Dekker, 1998).
  22. P. Parsa, S. L. Jacques, and N. S. Nishioka, “Optical properties of rat liver between 350 and 2200nm,” Appl. Opt. 28, 2325-2330 (1989). [CrossRef] [PubMed]
  23. W. Cheong, S. A. Prahl, and A. J. Welch, “A review of the opticalproperties of biological tissue,” IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  24. I. K. Jang, J. G. Tearney, and B. E. Bouma, “Visualization of tissue prolapse between coronary stent struts by optical coherence tomography,” Circulation 104, 2754-2759 (2001). [CrossRef] [PubMed]
  25. J. S. Schuman, C. A. Puliafito, and J. G. Fujimoto, Optical Coherence Tomography of Ocular Diseases, 2nd ed. (Slack, 2004).
  26. G. J. Tearney, M. E. Brezinski, J. F. Southern, B. E. Bouma, S. A. Boppart, and J. G. Fujimoto, “Optical biopsy in human gastrointestinal tissue using optical coherence tomography,” Am. J. Gastroenterol. 92, 1800-1804 (1997). [PubMed]
  27. R. L. Liboff, Introductory Quantum Mechanics 3rd ed. (Addison-Wesley, 1998).
  28. P. W. Anderson, Basic Notions of Condensed Matter Physics (Addison-Wesley, 1997).
  29. A. M. Zagoskin, Quantum Theory of Many Body Systems: Techniques and Applications (Springer, 1998). [CrossRef]
  30. R. F. Feynman, Statistical Mechanics (Addison-Wesley, 1998).
  31. V. R. Singh, “Instrumentation techniques for acousto-optic studies incomplex materials,” Appl. Acoust. 29, 289-304 (1990). [CrossRef]
  32. W. R. Klein and B. D. Cook, “Unified approach to ultrasonic light diffraction,” IEEE Trans. Sonics Ultrason. 14, 123-134 (1967).
  33. V. A. Del Grosso, “New equation for the speed of sound in natural waters with comparisons to other equations,” J. Acoust. Soc. Am. 56, 1084-1091 (1974). [CrossRef]
  34. M. Teich and B. Saleh, Fundamentals of Photonics (Wiley, 1991).
  35. W. H. Bragg and W. L. Bragg, “The reflection of x-rays by crystals,” Proc. R. Soc., London 20, 3271-3273 (1932).
  36. C. V. Raman and N. S. Nath, “Diffraction of light by high frequencysound waves,” Proc. Indian Acad. Sci., Sect. A 2, 406-412 (1935).
  37. A. Korpel, “Acousto-optics--a review of fundamentals,” in Proceedings of the IEEE (IEEE, 1981) pp. 48-53. [CrossRef]
  38. L. W. Wang, “Mechanisms of ultrasound modulation of multiply scattered coherent light: a Monte Carlo model,” Opt. Lett. 26, 1191-1993 (2001). [CrossRef]
  39. L. V. Wang, “Mechanisms of ultrasonic modulation of multiply scattered coherent light: an analytic model,” Phys. Rev. Lett. 87, 043903-043906 (2001). [CrossRef] [PubMed]
  40. W. Leutz and G. Maret, “Ultrasound modulation of multiply scatteredlight,” Physica B 204, 14-19 (1995). [CrossRef]
  41. F. Schwabl, Advanced Quantum Mechanics (Springer, 1997).
  42. M. Le Bellac, Quantum Physics (Cambridge U. Press, 2006).
  43. D. F. Nelson, “Momentum, pseudomentum, and wave momentum: toward resolving the Minkowski-Abraham controversy,” Phys. Rev. A 44, 3985-3996 (1991). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited