OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 4 — Apr. 1, 2008
  • pp: 974–978

Eigenfunctions of the complex fractional Fourier transform obtained in the context of quantum optics

Hong-Yi Fan, Li-yun Hu, and Ji-suo Wang  »View Author Affiliations


JOSA A, Vol. 25, Issue 4, pp. 974-978 (2008)
http://dx.doi.org/10.1364/JOSAA.25.000974


View Full Text Article

Enhanced HTML    Acrobat PDF (110 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We employ the recently established basis (the two-variable Hermite–Gaussian function) of the generalized Bargmann space (BGBS) [ Phys. Lett. A 303, 311 (2002) ] to study the generalized form of the fractional Fourier transform (FRFT). By using the technique of integration within an ordered product of operators and the bipartite entangled-state representations, we derive the generalized generating function of the BGBS with which the undecomposable kernel of the two-dimensional FRFT [also named complex fractional Fourier transform (CFRFT)] is obtained. This approach naturally shows that the BGBS is just the eigenfunction of the CFRFT.

© 2008 Optical Society of America

OCIS Codes
(270.6570) Quantum optics : Squeezed states
(070.2575) Fourier optics and signal processing : Fractional Fourier transforms

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: December 21, 2007
Manuscript Accepted: February 15, 2008
Published: March 26, 2008

Citation
Hong-Yi Fan, Li-yun Hu, and Ji-suo Wang, "Eigenfunctions of the complex fractional Fourier transform obtained in the context of quantum optics," J. Opt. Soc. Am. A 25, 974-978 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-4-974


Sort:  Year  |  Journal  |  Reset  

References

  1. V. Namias, “The fractional order Fourier transform and its application to quantum mechanics,” J. Inst. Math. Appl. 25, 241-265 (1980). [CrossRef]
  2. A. C. McBride and F. H. Kerr, “On Namias's fractional Fourier transforms,” IMA J. Appl. Math. 39, 159-175 (1987). [CrossRef]
  3. D. Mendlovic and H. M. Ozaktas, “Fractional Fourier transforms and their optical implementation: I.,” J. Opt. Soc. Am. A 10, 1875-1881 (1993). [CrossRef]
  4. H. M. Ozaktas and B. Barshan, “Convolution, filtering, and mutiplexing in fractional Fourier domains and their relation to chirp and wavelet transforms,” J. Opt. Soc. Am. A 11, 547-559 (1994). [CrossRef]
  5. A. W. Lohmann, “Image rotation, Wigner rotation, and the fractional Fourier transform,” J. Opt. Soc. Am. A 10, 2181-2186 (1993). [CrossRef]
  6. D. Mendlovic, H. M. Ozaktas, and A. W. Lohmann, “Graded index fibers, Wigner distribution functions and fractional Fourier transform,” Appl. Opt. 33, 6188-6193 (1994). [CrossRef] [PubMed]
  7. L. M. Bernardo and O. D. D. Soares, “Fractional Fourier transforms and optical systems,” Opt. Commun. 110, 517-522 (1994). [CrossRef]
  8. H. M. Ozaktas and D. Mendlovic, “Fourier transforms of fractional order and their optical implementation,” Opt. Commun. 101, 163-169 (1993). [CrossRef]
  9. S. Chountasis, A. Vourdas, and C. Bendjaballah, “Fractional Fourier operators and generalized Wigner functions,” Phys. Rev. A 60, 3467-3473 (1999). [CrossRef]
  10. I. S. Gradshteyn and L. M. Ryzhik, Tables of Integrals, Series and Products (Academic, 1980).
  11. H. Y. Fan and J. H. Chen, “EPR entangled state and generalized Bargmann transformation,” Phys. Lett. A 303, 311-317 (2002). [CrossRef]
  12. H. Y. Fan and J. R. Klauder, “Eigenvectors of two particles' relative position and total momentum,” Phys. Rev. A 49, 704-707 (1994). [CrossRef]
  13. H. Y. Fan and Y. Fan, “Representations of two-mode squeezing transformations,” Phys. Rev. A 54, 958-960 (1996). [CrossRef]
  14. H. Y. Fan and X. Ye, “Common eigenstates of two particles' center-of-mass coordinates and mass-weighted relative momentum,” Phys. Rev. A 51, 3343-3346 (1995). [CrossRef]
  15. H. Y. Fan, “Operator ordering in quantum optics theory and the development of Dirac's symbolic method,” J. Opt. B: Quantum Semiclassical Opt. 5, R147-R163 (2003). [CrossRef]
  16. H. Y. Fan, H. R. Zaidi, and J. R. Klauder, “New approach for calculating the normally ordered form of squeeze operators,” Phys. Rev. D 35, 1831-1834 (1987). [CrossRef]
  17. A. Wünsche, “About integration within ordered products in quantum optics,” J. Opt. B: Quantum Semiclassical Opt. 2, R11-R21 (2000).
  18. Bateman Manuscript Project, Higher Transcendental Functions, A.Erdèlyi, ed. (McGraw-Hill, 1953).
  19. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?” Phys. Rev. 47, 777-780 (1935). [CrossRef]
  20. H. Y. Fan, “Fractional Hankel transform studied by charge-amplitude state representations and complex fractional Fourier transformation,” Opt. Lett. 28, 2177-2179 (2003). [CrossRef] [PubMed]
  21. R. Loudon and P. L. Knight, “Squeezed light,” J. Mod. Opt. 34, 709-759 (1987). [CrossRef]
  22. D. F. Walls, “Squeezed states of light,” Nature 306, 141-146 (1983). [CrossRef]
  23. H. P. Yuen, “Two-photon coherent states of the radiation field,” Phys. Rev. A 13, 2226-2243 (1976). [CrossRef]
  24. M. C. Teich and B. E. A. Saleh, “Squeezed states of light,” Quantum Opt. 1, 153-191 (1989). [CrossRef]
  25. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited