OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 1000–1015

Unambiguous phase retrieval as a cophasing sensor for phased array telescopes

Fabien Baron, Isabelle Mocœur, Frédéric Cassaing, and Laurent M. Mugnier  »View Author Affiliations

JOSA A, Vol. 25, Issue 5, pp. 1000-1015 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (480 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cophasing a multiple-aperture optical telescope (MAOT) or optical interferometer requires the knowledge of the tips/tilts and of the differential pistons on its subapertures. In this paper we demonstrate in the case of a point source object that a single focal-plane image is sufficient for MAOT cophasing. Adopting a least-square approach allows us to derive an analytic estimator of the subaperture aberrations, provided that these are small enough (typically for closed-loop operation) and that the pupil is diluted noncentrosymmetric. We then provide the validation of this estimator by simulations as well as a performance comparison with a more conventional iterative algorithm of phase retrieval. Finally, we present the experimental validation of both estimators on a laboratory test bench; our results, especially subnanometric repeatability, demonstrate that focal-plane sensors are appropriate for the cophasing of phased array telescopes.

© 2008 Optical Society of America

OCIS Codes
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(100.3190) Image processing : Inverse problems
(100.5070) Image processing : Phase retrieval
(110.5100) Imaging systems : Phased-array imaging systems
(120.3180) Instrumentation, measurement, and metrology : Interferometry

ToC Category:
Instrumentation, Measurement, and Metrology

Original Manuscript: August 10, 2007
Revised Manuscript: January 4, 2008
Manuscript Accepted: January 24, 2008
Published: April 9, 2008

Fabien Baron, Isabelle Mocoeur, Frédéric Cassaing, and Laurent M. Mugnier, "Unambiguous phase retrieval as a cophasing sensor for phased array telescopes," J. Opt. Soc. Am. A 25, 1000-1015 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. VLTI website, http://www.eso.org/projects/vlti.
  2. KECK website, http://planetquest.jpl.nasa.gov/Keck/keck_index.html.
  3. OHANA website, http://www.cfht.hawaii.edu/~lai/ohana.html.
  4. DARWIN website, http://sci.esa.int/science-e/www/area/index.cfm?fareaid=28.
  5. TPF website, http://planetquest.jpl.nasa.gov/TPF/tpf_index.html.
  6. JWST website, http://www.jwst.nasa.gov.
  7. M. Mesrine, E. Thomas, S. Garin, P. Blanc, C. Alis, F. Cassaing, and D. Laubier, “High resolution Earth observation from Geostationary orbit by optical aperture synthesis,” in Sixth International Conference on Space Optics, Proceedings of ESA/CNES ISCO 2006, A. Wilson, ed., CDROM, ESA SP-621 (2006).
  8. NAOS website, http://www.eso.org/instruments/naco.
  9. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttgart) 35, 237-246 (1972).
  10. R. A. Gonsalves, “Phase retrieval from modulus data,” J. Opt. Soc. Am. 66, 961-964 (1976). [CrossRef]
  11. J. G. Walker, “The phase retrieval problem: a solution based on zero location by exponential apodization,” Opt. Acta 28, 735-738 (1981). [CrossRef]
  12. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758-2769 (1982). [CrossRef] [PubMed]
  13. J. N. Cederquist, J. R. Fienup, C. C. Wackerman, S. R. Robinson, and D. Kryskowski, “Wave-front phase estimation from Fourier intensity measurements,” J. Opt. Soc. Am. A 6, 1020-1026 (1989). [CrossRef]
  14. R. A. Gonsalves, “Small-phase solution to the phase retrieval problem,” Opt. Lett. 26, 684-685 (2001). [CrossRef]
  15. A. Blanc, “Identification de réponse impulsionnelle et restauration d'images: apports de la diversité de phase,” Ph.D. thesis (Université Paris XI Orsay, 2002).
  16. J. R. Fienup, “Phase-retrieval algorithms for a complicated optical system,” Appl. Opt. 32, 1737-1746 (1993). [CrossRef] [PubMed]
  17. J. R. Fienup, J. C. Marron, T. J. Schulz, and J. H. Seldin, “Hubble space telescope characterized by using phase retrieval algorithms,” Appl. Opt. 32, 1747-1768 (1993). [CrossRef] [PubMed]
  18. R. A. Gonsalves, “Phase retrieval and diversity in adaptive optics,” Opt. Eng. (Bellingham) 21, 829-832 (1982).
  19. L. M. Mugnier, A. Blanc, and J. Idier, “Phase diversity: a technique for wave-front sensing and for diffraction-limited imaging,” in Advances in Imaging and Electron Physics, P.Hawkes, ed. (Elvesier, 2006), Vol. 20, pp. 1-76.
  20. A. Blanc, T. Fusco, M. Hartung, L. M. Mugnier, and G. Rousset, “Calibration of NAOS and CONICA static aberrations. Application of the phase diversity technique,” Astron. Astrophys. 399, 373-383 (2003). [CrossRef]
  21. R. G. Paxman and J. R. Fienup, “Optical misalignment sensing and image reconstruction using phase diversity,” J. Opt. Soc. Am. A 5, 914-923 (1988). [CrossRef]
  22. R. G. Paxman, T. J. Schultz, and J. R. Fienup, “Joint estimation of object and aberrations by using phase diversity,” J. Opt. Soc. Am. A 9, 1072-1085 (1992). [CrossRef]
  23. F. Baron, “Définition et test d'un capteur de cophasage sur télescope multipupilles: application à la détection d'exoplanètes et à l'observation de la Terre,” Ph.D. thesis (Ecole Doctorale d'Astronomie et d'Astrophysique d'Ile de France, 2005).
  24. C. R. Vogel, T. Chan, and R. Plemmons, “Fast algorithms for phase-diversity-based blind deconvolution,” Proc. SPIE 3353, 994-1005 (1998). [CrossRef]
  25. M. G. Löfdahl, A. L. Duncan, and G. B. Scharmer, “Fast phase diversity wavefront sensor for mirror control,” Proc. SPIE 3353, 952-963 (1998). [CrossRef]
  26. R. L. Kendrick, D. S. Acton, and A. L. Duncan, “Phase-diversity wave-front sensor for imaging systems,” Appl. Opt. 33, 6533-6546 (1994). [CrossRef] [PubMed]
  27. G. B. Scharmer, “Object-independent fast phase-diversity,” in High Resolution Solar Physics: Theory, Observations and Techniques, T.R.Rimmele, K.S.Balasubramaniam, and R.R.Radick, eds., Vol. 183 of Astron. Soc. Pacific Conf. Series (1999), pp. 330-341.
  28. M. G. Löfdahl and G. B. Scharmer, “A predictor approach for closed-loop phase diversity wavefront sensing,” Proc. SPIE 4013, 737-748 (2000). [CrossRef]
  29. I. Mocoeur, L. M. Mugnier, and F. Cassaing, “Cophasage de télescopes multi pupilles sur scènes étendues par diversité de phase temps-réel,” presented at la 26ième Colloque sur le Traitement du Signal et des Images, September 11-14, 2007, Troyes, France. Available from the authors: mugnier@onera.fr.
  30. J. Idier, L. M. Mugnier, and A. Blanc, “Statistical behavior of joint least square estimation in the phase diversity context,” IEEE Trans. Image Process. 14, 2107-2116 (2005). [CrossRef] [PubMed]
  31. C. V. M. Fridlund, “The DARWIN mission,” Adv. Space Res. 34, 613-617 (2004). [CrossRef]
  32. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207-211 (1976). [CrossRef]
  33. F. Cassaing, “Optical path difference sensors,” C.R. Acad. Sci. Paris, Ser. IV 21, 87-98 (2001).
  34. B. Sorrente, F. Cassaing, F. Baron, C. Coudrain, B. Fleury, F. Mendez, V. Michau, L. Mugnier, G. Rousset, L. Rousset-Rouvière, and M.-T. Velluet, “Multiple-aperture optical telescopes: cophasing sensor test-bed,” in Proceedings of the 5th International Conference on Space Optics, B.Warmbein, ed., Vol. SP-554 (ESA, 2004), pp. 479-484.
  35. F. Cassaing, B. Sorrente, L. Mugnier, G. Rousset, V. Michau, I. Mocoeur, and F. Baron, “BRISE: a multipurpose bench for cophasing sensors,” Proc. SPIE 6268, 626834 (2006).
  36. F. Cassaing, F. Baron, E. Schmidt, S. Hofer, L. M. Mugnier, M. Barillot, G. Rousset, T. Stuffler, and Y. Salvadé, “DARWIN Fringe Sensor (DWARF): Concept study,” in Proceedings of the Conference on Towards Other Earths: DARWIN/TPF and the Search for Extrasolar Terrestrial Planets, M.Fridlund, T.Henning, and H.Lacoste, eds., Vol. SP-539 (ESA, 2003), pp. 389-392.
  37. E. Schmidt, F. Cassaing, S. Hofer, M. Barillot, F. Baron, L. M. Mugnier, G. Rousset, and T. Stuffler, “DARWIN Fringe Sensor (DWARF): breadboard development,” in Proceedings of the Conference on Towards Other Earths: DARWIN/TPF and the Search for Extrasolar Terrestrial Planets, M.Fridlund, T.Henning, and H.Lacoste, eds., Vol. SP-539, (ESA, 2003), pp. 575-577.
  38. J. H. Seldin, R. G. Paxman, V. G. Zarifis, L. Benson, and R. E. Stone, “Closed-loop wavefront sensing for a sparse-aperture, phased-array telescope using broadband phase diversity,” Proc. SPIE 4091, 48-63 (2000). [CrossRef]
  39. F. Cassaing, “Analyse d'un instrument à synthèse d'ouverture optique: méthodes de cophasage et imagerie à haute résolution angulaire,” Ph.D. thesis (Université Paris XI Orsay, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited