OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 1030–1038

Scattering polarization by anisotropic biomolecules

Tsu-Wei Nee, Soe-Mie F. Nee, De-Ming Yang, and Yu-Shan Huang  »View Author Affiliations

JOSA A, Vol. 25, Issue 5, pp. 1030-1038 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The full polarization properties of anisotropic biomolecule optical scattering are investigated theoretically. By using a simple ellipsoid model of a single biomolecule, the scattering fields and Mueller matrices are derived from fundamental electromagnetism theory. The energy of scattered photons is not necessarily equal to that of the incident laser beam. This theory can be generally applied to the experiments of fluorescence, Raman scattering, and second-harmonic generation. Fitting of a single tetramethylrhodamine-labeled lipid molecule’s anisotropic imaging experiment is demonstrated. This theory has provided a fundamental simulation analysis tool of understanding and developing the optical polarimetric sensing science and technology of the anisotropic biomolecules and biomedium. The medium dielectric constant of the model ellipsoid provides a theoretic background for correlating the optical polarization properties of a biomolecule to its microscopic electronic structure.

© 2008 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(290.1350) Scattering : Backscattering
(290.5840) Scattering : Scattering, molecules
(290.5825) Scattering : Scattering theory
(290.5855) Scattering : Scattering, polarization

ToC Category:

Original Manuscript: January 8, 2008
Manuscript Accepted: February 22, 2008
Published: April 15, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Tsu-Wei Nee, Soe-Mie F. Nee, De-Ming Yang, and Yu-Shan Huang, "Scattering polarization by anisotropic biomolecules," J. Opt. Soc. Am. A 25, 1030-1038 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Z. Chen, H. Ren, Z. Ding, Y. Zhao, J. Miao, and J. S. Nelson, “Biomedical imaging: simultaneous imaging of in situ tissue structure, blood-flow velocity, standard deviation, birefringence and Stokes vectors in human skin,” Opt. Photon. News, December 2002, p. 14.
  2. C. E. Saxer, J. F. de Boer, B. H. Park, Y. Zhao, Z. Chen, and J. S. Nelson, “High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin,” Opt. Lett. 25, 1355-1357 (2000). [CrossRef]
  3. S. Liao and L. V. Wang, “Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography,” Opt. Lett. 27, 101-103 (2002). [CrossRef]
  4. J. F. de Boer and T. E. Milner, “Review of polarization sensitive optical coherence tomography and Stokes vector determination,” J. Biomed. Opt. 7, 359-371 (2002). [CrossRef] [PubMed]
  5. C. C. Wu, Y. M. Wang, L. S. Lu, C. W. Sun, C. W. Lu, M. T. Tsai, and C. C. Yang, “Optical birefringence of the hyperlipidemic rat liver with polarization-sensitive optical coherence tomography,” J. Biomed. Opt. 12, 64022 (2007). [CrossRef]
  6. M. Hashimoto, R. Kanamaru, K. Yoshiki, T. Araki, and N. Hashimoto, “Second-harmonic microscope with polarization mode converter,” Presented at the Ninth International Conference on Optics Within Life Science (OWLS9), National Yang-Ming University, Taipei, Taiwan, November 26-29, 2006, Paper O4-7.
  7. C. L. Berger, J. S. Craik, D. R. Trentham, J. E. T. Corrie, and Y. E. Goldman, “Fluorescence polarization of skeletal muscle fibers labeled with rhodamine isomers on the myosin heavy chain,” Biophys. J. 71, 3330-3343 (1966). [CrossRef]
  8. P. Wu, M. Brasseur, and U. Schindler, “Measurement of specific protease activity utilizing fluorescence polarization,” Anal. Biochem. 247, 83-88 (1997). [CrossRef]
  9. G. S. Harms, M. Sonnleitner, G. S. Schutz, H. J. Gruber, and T. Schmidt, “Single-molecule anisotropy imaging,” Biophys. J. 77, 2864-2870 (1999). [CrossRef] [PubMed]
  10. G. S. Harms, L. Cognet, P. H. M. Lommerse, G. A. Blab, H. Kahr, R. Gamsjager, H. P. Spanink, N. M. Soldatov, C. Romanin, and T. Schmidt, “Single-molecule imaging of L-type Ca2+ channels in live cells,” Biophys. J. 81, 2639-2646 (2001). [CrossRef] [PubMed]
  11. M. Hashimoto, K. Yamada, and T. Araki, “Proposition of single molecular orientation determination using polarization controlled beam by liquid crystal spatial light modulators,” Opt. Rev. 12, 37-41 (2005). [CrossRef]
  12. S.-M. F. Nee, “Polarization measurement,” in The Measurement, Instrumentation and Sensors Handbook, J.G.Webster, ed. (CRC Press and IEEE Press, 1999), pp. 60.1-60.24.
  13. T.-W. Nee and S.-M. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231-241 (1995). [CrossRef]
  14. T. W. Nee, S. F. Nee, and E. J. Bevan, “Infrared polarization signatures of a target for enhanced discrimination,” in Proceedings of the IRIS Specialty Group on Targets, Backgrounds and Discrimination (IRIA-IRIS, 1996), Vol. IV, pp. 349-368.
  15. T.-W. Nee and S.-M. F. Nee, “Polarization of holographic grating diffraction. I. General theory,” J. Opt. Soc. Am. A 21, 523-531 (2004). [CrossRef]
  16. T.-W. Nee, S.-M. F. Nee, M. Kleinschmit, and S. Shahriar, “Polarization of holographic grating diffraction. II. Experiment,” J. Opt. Soc. Am. A 21, 532-539 (2004). [CrossRef]
  17. T.-W. Nee, “Second harmonic diffraction from holographic volume grating,” J. Opt. Soc. Am. A 23, 2510-2518 (2006). [CrossRef]
  18. C. Kittel, Solid State Physics (Wiley, 1976), pp. 404-405.
  19. L. Davis, Jr. and J. L. Greenstein, “The polarization of starlight by aligned dust grains,” Astrophys. J. 114, 206-240 (1951). [CrossRef]
  20. S.-M. F. Nee, “Ellipsometric analysis for surface roughness and texture,” Appl. Opt. 27, 2819-2831 (1988). [CrossRef] [PubMed]
  21. J. D. Jackson, Classical Electrodynamics (Wiley, 1962).
  22. V. Prasad, D. Semwogerere, and E. R. Weeks, “Confocal microscopy of colloids,” J. Phys.: Condens. Matter 19, 113102 (2007). [CrossRef]
  23. S. F. Nee, “Polarization of specular reflection and near-specular scattering by a rough surface,” Appl. Opt. 35, 3570-3582 (1996). [CrossRef]
  24. S.-M. F. Nee, “Depolarization and retardation of a birefringent slab,” J. Opt. Soc. Am. A 17, 2067-2073 (2000). [CrossRef]
  25. S.-M. F. Nee and T.-W. Nee, “Principal Mueller matrix of reflection and scattering measured for a one-dimensional rough surface,” Opt. Eng. (Bellingham) 41, 994-1001 (2002). [CrossRef]
  26. V. V. Tuchin, Tissue Optics (SPIE, 2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited