OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 1039–1050

Adaptive reshaping of objects in (multiparameter) Hilbert space for enhanced detection and classification: an application of receiver operating curve statistics to laser-based mass spectroscopy

Dmitri A. Romanov, Dennis M. Healy, John J. Brady, and Robert J. Levis  »View Author Affiliations

JOSA A, Vol. 25, Issue 5, pp. 1039-1050 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (748 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a new approach to the classical detection problem of discrimination of a true signal of interest from an interferent signal, which may be applied to the area of chemical sensing. We show that the detection performance, as quantified by the receiver operating curve (ROC), can be substantially improved when the signal is represented by a multicomponent data set that is actively manipulated by means of a shaped laser probe pulse. In this case, the signal sought (agent) and the interfering signal (interferent) are visualized by vectors in a multidimensional detection space. Separation of these vectors can be achieved by adaptive modification of a probing laser pulse to actively manipulate the Hamiltonian of the agent and interferent. We demonstrate one implementation of the concept of adaptive rotation of signal vectors to chemical agent detection by means of strong-field time-of-flight mass spectrometry.

© 2008 Optical Society of America

OCIS Codes
(000.5490) General : Probability theory, stochastic processes, and statistics
(260.5130) Physical optics : Photochemistry
(350.3450) Other areas of optics : Laser-induced chemistry
(350.5130) Other areas of optics : Photochemistry
(020.2649) Atomic and molecular physics : Strong field laser physics

ToC Category:
Physical Optics

Original Manuscript: May 1, 2007
Revised Manuscript: January 17, 2008
Manuscript Accepted: January 24, 2008
Published: April 17, 2008

Dmitri A. Romanov, Dennis M. Healy, John J. Brady, and Robert J. Levis, "Adaptive reshaping of objects in (multiparameter) Hilbert space for enhanced detection and classification: an application of receiver operating curve statistics to laser-based mass spectroscopy," J. Opt. Soc. Am. A 25, 1039-1050 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Bellman, Adaptive Control Processes: A Guided Tour (Princeton U. Press, 1961).
  2. D. W. Scott, Multivariate Density Estimation (Wiley, 1992). [CrossRef]
  3. C. E. Priebe, D. J. Marchette, and D. M. Healy, “Integrated sensing and processing decision trees,” IEEE Trans. Pattern Anal. Mach. Intell. 26, 699-708 (2004). [CrossRef]
  4. R. J. Levis and H. A. Rabitz, “Closing the loop on bond selective chemistry using tailored strong field laser pulses,” J. Phys. Chem. A 106, 6427-6444 (2002). [CrossRef]
  5. R. S. Judson and H. Rabitz, “Teaching lasers to control molecules,” Phys. Rev. Lett. 68, 1500-1503 (1992). [CrossRef] [PubMed]
  6. M. M. Wefers and K. A. Nelson, “Ultrafast optical wave-forms,” Science 262, 1381-1382 (1993). [CrossRef] [PubMed]
  7. D. Meshulach, D. Yelin, and Y. Silberberg, “Adaptive real-time femtosecond pulse shaping,” J. Opt. Soc. Am. B 15, 1615-1619 (1998). [CrossRef]
  8. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71, 1929-1960 (2000). [CrossRef]
  9. T. Brixner, A. Oehrlein, M. Strehle, and G. Gerber, “Feedback-controlled femtosecond pulse shaping,” Appl. Phys. B: Lasers Opt. 70, S119-S124 (2000). [CrossRef]
  10. R. J. Levis, G. M. Menkir, and H. Rabitz, “Selective bond dissociation and rearrangement with optimally tailored, strong-field laser pulses,” Science 292, 709-713 (2001). [CrossRef] [PubMed]
  11. N. P. Moore, G. M. Menkir, A. N. Markevitch, P. Graham, and R. J. Levis, “The mechanisms of strong-field control of chemical reactivity using tailored laser pulses,” in Laser Control and Manipulation of Molecules, A.D.Bandrauk, R.J.Gordon, and Y.Fujimura, eds. (American Chemical Society, 2002), pp. 207-220. [CrossRef]
  12. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56, 219-221 (1985). [CrossRef]
  13. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable shaping of femtosecond optical pulses by use of 128-element liquid-crystal phase modulator,” IEEE J. Quantum Electron. 28, 908-920 (1992). [CrossRef]
  14. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161-237 (1995). [CrossRef]
  15. M. M. Wefers and K. A. Nelson, “Programmable phase and amplitude femtosecond pulse shaping,” Opt. Lett. 18, 2032-2034 (1993). [CrossRef] [PubMed]
  16. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, “Chemistry—whither the future of controlling quantum phenomena?” Science 288, 824-828 (2000). [CrossRef] [PubMed]
  17. T. C. Weinacht and P. H. Bucksbaum, “Using feedback for coherent control of quantum systems,” J. Opt. B: Quantum Semiclassical Opt. 4, R35-R52 (2002). [CrossRef]
  18. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414, 57-60 (2001). [CrossRef] [PubMed]
  19. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys. 9, 2470-2497 (2007). [CrossRef] [PubMed]
  20. B. J. Pearson, J. L. White, T. C. Weinacht, and P. H. Bucksbaum, “Coherent control using adaptive learning algorithms,” Phys. Rev. A 6306, 063412 (2001). [CrossRef]
  21. J. L. White, B. J. Pearson, and P. H. Bucksbaum, “Extracting quantum dynamics from genetic learning algorithms through principal control analysis,” J. Phys. B 37, L399-L405 (2004). [CrossRef]
  22. B. von Vacano, L. Meyer, and M. Motzkus, “Rapid polymer blend imaging with quantitative broadband multiplex CARS microscopy,” J. Raman Spectrosc. 38, 916-926 (2007). [CrossRef]
  23. G. I. Petrov, V. V. Yakovlev, A. V. Sokolov, and M. O. Scully, “Detection of Bacillus subtilis spores in water by means of broadband coherent anti-Stokes Raman spectroscopy,” Opt. Express 13, 9537-9542 (2005). [CrossRef] [PubMed]
  24. A. Dogariu, Y. Huang, Y. Avitzour, R. K. Murawski, and M. O. Scully, “Sensitive femtosecond coherent anti-Stokes Raman spectroscopy discrimination between dipicolinic acid and dinicotinic acid,” Opt. Lett. 31, 3176-3178 (2006). [CrossRef] [PubMed]
  25. D. Pestov, R. K. Murawski, G. O. Ariunbold, X. Wang, M. C. Zhi, A. V. Sokolov, V. A. Sautenkov, Y. V. Rostovtsev, A. Dogariu, Y. Huang, and M. O. Scully, “Optimizing the laser-pulse configuration for coherent Raman spectroscopy,” Science 316, 265-268 (2007). [CrossRef] [PubMed]
  26. B. von Vacano and M. Motzkus, “Molecular discrimination of a mixture with single-beam Raman control,” J. Chem. Phys. 127, 144514 (2007). [CrossRef] [PubMed]
  27. M. J. DeWitt and R. J. Levis, “Observing the transition from a multiphoton-dominated to a field-mediated ionization process for polyatomic molecules in intense laser fields,” Phys. Rev. Lett. 81, 5101-5104 (1998). [CrossRef]
  28. M. Spanner and P. Brumer, “Mechanisms for the control of two-mode transient stimulated Raman scattering in liquids,” Phys. Rev. A 73, 023809 (2006). [CrossRef]
  29. M. Spanner and P. Brumer, “Two-pulse control of Raman scattering in liquid methanol: the dominance of classical nonlinear optical effects,” Phys. Rev. A 73, 023810 (2006). [CrossRef]
  30. S. M. Kay, Fundamentals of Statistical Signal Processing, Vol. II: Detection Theory (Prentice Hall, 1998).
  31. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (U. S. Government Printing Office, 1972).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited