OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 1115–1129

Transverse resolution improvement using rotating-grating time-multiplexing approach

Vicente Mico, Ofer Limon, Aviram Gur, Zeev Zalevsky, and Javier García  »View Author Affiliations


JOSA A, Vol. 25, Issue 5, pp. 1115-1129 (2008)
http://dx.doi.org/10.1364/JOSAA.25.001115


View Full Text Article

Enhanced HTML    Acrobat PDF (867 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The ability to improve the limited resolving power of optical imaging systems while approaching the theoretical diffraction limit has been an attractive discipline with growing interest over the last years due to its benefits in many applied optics systems. This paper presents a new approach to achieve transverse superresolution in far-field imaging systems, with direct application in both digital microscopy and digital holographic microscopy. Theoretical analysis and computer simulations show the validity of the presented approach.

© 2008 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(110.4850) Imaging systems : Optical transfer functions
(170.0110) Medical optics and biotechnology : Imaging systems

ToC Category:
Image Processing

History
Original Manuscript: September 13, 2007
Revised Manuscript: February 6, 2008
Manuscript Accepted: February 10, 2008
Published: April 23, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Vicente Mico, Ofer Limon, Aviram Gur, Zeev Zalevsky, and Javier García, "Transverse resolution improvement using rotating-grating time-multiplexing approach," J. Opt. Soc. Am. A 25, 1115-1129 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-5-1115


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Abbe, “Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung” Arch. Mikrosk. Anat. 9, 413-468 (1873).
  2. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  3. D. Courjon, Near-Field Microscopy and Near-Field Optics (Imperial College Press, 2003).
  4. Z. Zalevsky and D. Mendlovic, Optical Super Resolution (Springer, 2002).
  5. M. Bertero, C. De Mol, “Super-resolution by data inversion,” in E.Wolf. (ed.), Progress in Optics, Vol. XXXVI (Elsevier North-Holland, 1996), Chap. III, pp. 129-178. [CrossRef]
  6. P. Jacquinot, “Apodization,” Prog. Opt. 3, 29-186 (1964). [CrossRef]
  7. T. Wilson and C. J. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, 1984).
  8. G. Toraldo di Francia, “Resolving power and information,” J. Opt. Soc. Am. 45, 497-501 (1955). [CrossRef]
  9. G. Toraldo di Francia, “Degrees of freedom of an image,” J. Opt. Soc. Am. 59, 799-804 (1969). [CrossRef] [PubMed]
  10. I. J. Cox and J. R. Sheppard, “Information capacity and resolution in an optical system,” J. Opt. Soc. Am. A 3, 1152-1158 (1986). [CrossRef]
  11. A. J. den Dekker and A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14, 547-557 (1997). [CrossRef]
  12. W. Lukosz, “Optical systems with resolving powers exceeding the classical limits,” J. Opt. Soc. Am. 56, 1463-1472 (1966). [CrossRef]
  13. W. Lukosz, “Optical systems with resolving powers exceeding the classical limits II,” J. Opt. Soc. Am. 57, 932-941 (1967). [CrossRef]
  14. M. Francon, “Amélioration the résolution d'optique,” Il Nuovo Cimento Suppl. 9, 283-290 (1952).
  15. A. Shemer, D. Mendlovic, Z. Zalevsky, J. García, and P. García-Martínez, “Superresolving optical system with time multiplexing and computer decoding,” Appl. Opt. 38, 7245-7251 (1999). [CrossRef]
  16. A. W. Lohmann and D. P. Paris, “Superresolution for nonbirefringent objects,” Appl. Opt. 3, 1037-1043 (1964). [CrossRef]
  17. A. I. Kartashev, “Optical system with enhanced resolving power,” Opt. Spectra 9, 204-206 (1960).
  18. M. A. Grimm and A. W. Lohmann, “Superresolution image for one-dimensional object,” J. Opt. Soc. Am. 56, 1151-1156 (1966). [CrossRef]
  19. Z. Zalevsky, P. García-Martínez, and J. García, “Superresolution using gray level coding,” Opt. Express 14, 5178-5182 (2006). [CrossRef] [PubMed]
  20. D. Mendlovic and A. W. Lohman, “Space-bandwidth product adaptation and its application to super resolution: fundamentals,” J. Opt. Soc. Am. A 14, 558-562 (1997). [CrossRef]
  21. D. Mendlovic, A. W. Lohman, and Z. Zalevsky, “Space-bandwidth product adaptation and its application for super resolution: examples,” J. Opt. Soc. Am. A 14, 563-567 (1997). [CrossRef]
  22. E. Sabo, Z. Zalevsky, D. Mendlovic, N. Komforti, and I. Kiryushev, “Superresolution optical system with two fixed generalized Damman gratings,” Appl. Opt. 39, 5318-5325 (2000). [CrossRef]
  23. E. Sabo, Z. Zalevsky, D. Mendlovic, N. Komforti, and I. Kiryushev, “Superresolution optical system using three fixed generalized gratings: experimental results,” J. Opt. Soc. Am. A 18, 514-520 (2001). [CrossRef]
  24. A. Bachl and W. Lukosz, “Experiments on superresolution imaging of a reduced object field,” J. Opt. Soc. Am. 57, 163-169 (1967). [CrossRef]
  25. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198, 82-87 (2000). [CrossRef] [PubMed]
  26. R. Heintzmann and P. A. Benedetti, “High-resolution image reconstruction in fluorescence microscopy with patterned excitation,” Appl. Opt. 45, 5037-5045 (2006). [CrossRef] [PubMed]
  27. J. Ryu, S. S. Hong, B. K. P. Horn, D. M. Freeman, and M. S. Mermelstein, “Multibeam interferometric illumination as the primary source of resolution in optical microscopy,” Appl. Phys. Lett. 88, 171112 (2006). [CrossRef]
  28. J. T. Frohn, H. F. Knapp, and A. Stemmer, “True optical resolution beyond the Rayleigh limit achieved by standing wave illumination,” Proc. Natl. Acad. Sci. U.S.A. 97, 7232-7236 (2000). [CrossRef] [PubMed]
  29. R. Heintzmann, T. M. Jovin, and C. Cremer, “Saturated patterned excitation microscopy—a concept for optical resolution improvement,” J. Opt. Soc. Am. A 19, 1599-1609 (2002). [CrossRef]
  30. M. G. L. Gustafsson, “Nonlinear structured illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. U.S.A. 102, 13081-13086 (2005). [CrossRef] [PubMed]
  31. J. García, Z. Zalevsky, and D. Fixler, “Synthetic aperture superresolution by speckle pattern projection,” Opt. Express 13, 6073-6078 (2005). [CrossRef] [PubMed]
  32. E. Ben-Eliezer and E. Marom, “Aberration-free superresolution imaging via binary speckle pattern encoding and processing,” J. Opt. Soc. Am. A 24, 1003-1010 (2007). [CrossRef]
  33. B. J. Guo and S. L. Zhuang, “Image superresolution by using a source-encoding technique,” Appl. Opt. 30, 5159-5162 (1991). [CrossRef] [PubMed]
  34. Z. Zalevsky, J. García, P. García-Martínez, and C. Ferreira, “Spatial information transmission using orthogonal mutual coherence coding,” Opt. Lett. 30, 2837-2839 (2005). [CrossRef] [PubMed]
  35. E. N. Leith, D. Angell, and C.-P. Kuei, “Superresolution by incoherent-to-coherent conversion,” J. Opt. Soc. Am. A 4, 1050-1054 (1987). [CrossRef]
  36. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Single step superresolution by interferometric imaging,” Opt. Express 12, 2589-2596 (2004). [CrossRef] [PubMed]
  37. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44, 1806-1812 (2005). [CrossRef] [PubMed]
  38. C. Iemmi, A. Moreno, and J. Campos, “Digital holography with a point-diffraction interferometer,” Opt. Express 13, 1885-1891 (2005). [CrossRef] [PubMed]
  39. X. Chen and S. R. J. Brueck, “Imaging interferometric lithography: approaching the resolution limits of optics,” Opt. Lett. 24, 124-126 (1999). [CrossRef]
  40. T. Colomb, P. Dahlgren, D. Beghuin, E. Cuche, P. Marquet, and C. Depeursinge, “Polarization imaging by use of digital holography,” Appl. Opt. 41, 27-37 (2002). [CrossRef] [PubMed]
  41. H. Medecki, E. Tejnil, K. A. Goldberg, and J. Bokor, “Phase-shifting point diffraction interferometer,” Opt. Lett. 21, 1526-1528 (1996). [CrossRef] [PubMed]
  42. T. Colomb, J. Kühn, F. Charrière, N. Aspert, P. Marquet, and C. Depeursinge, “Total aberration compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300-4306 (2006). [CrossRef] [PubMed]
  43. I. Tamaguchi and T. Zhong, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997). [CrossRef]
  44. C. J. Schwarz, Y. Kuznetsova, and S. R. J. Brueck, “Imaging interferometric microscopy,” Opt. Lett. 28, 1424-1426 (2003). [CrossRef] [PubMed]
  45. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Superresolved imaging in digital holography by superposition of tilted wavefronts,” Appl. Opt. 45, 822-828 (2006). [CrossRef] [PubMed]
  46. V. Mico, Z. Zalevsky, and J. García, “Superresolution optical system by common-path interferometry,” Opt. Express 14, 5168-5177 (2006). [CrossRef] [PubMed]
  47. V. Mico, Z. Zalevsky, P. García-Martínez, and J. García, “Synthetic aperture superresolution using multiple off-axis holograms,” J. Opt. Soc. Am. A 23, 3162-3170 (2006). [CrossRef]
  48. S. A. Alexandrov, T. R. Hillman, T. Gutzler, and D. D. Sampson, “Synthetic aperture Fourier holographic optical microscopy,” Phys. Rev. Lett. 97, 168102 (2007). [CrossRef]
  49. J. R. Price, P. R. Bingham, and C. E. Thomas, Jr., “Improving resolution in microscopic holography by computationally fusing multiple, obliquely illuminated object waves in the Fourier domain,” Appl. Opt. 46, 826-833 (2007). [CrossRef]
  50. V. Mico, Z. Zalevsky, and J. García, “Synthetic aperture microscopy using off-axis illumination and polarization coding,” Opt. Commun. 276, 209-217 (2007). [CrossRef]
  51. J. García, D. Mas, and R. G. Dorsch, “Fractional-Fourier-transform calculation through the fast-Fourier-transform algorithm,” Appl. Opt. 35, 7013-7018 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited