OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 1130–1141

Reflection photoelastic tomography for the detection of stress distribution in planar optical waveguides

Silvia Maria Pietralunga, Maddalena Ferrario, Alberto Licciardello, and Mario Martinelli  »View Author Affiliations


JOSA A, Vol. 25, Issue 5, pp. 1130-1141 (2008)
http://dx.doi.org/10.1364/JOSAA.25.001130


View Full Text Article

Enhanced HTML    Acrobat PDF (1161 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel method for measuring local stress distributions and birefringence of films on substrates and planar optical waveguides, with submicrometric resolution, is presented. The technique relies on a reflective tomographic configuration, applied in conjunction with a polarimetric setup, which processes the stress-induced change of the state of polarization of a laser probe beam reflected at the waveguide–substrate (film–substrate) interface. By this means, theoretically foreseen stress behavior can be experimentally verified and spurious or induced local stress variations in integrated optics components can also be brought into evidence. The feasibility of the proposed method has been verified by reconstructing the two-dimensional axial stress distribution in the 4 × 2 μ m 2 core region of a doped silica-on-silicon optical waveguide.

© 2008 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(120.4630) Instrumentation, measurement, and metrology : Optical inspection
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.7370) Optical devices : Waveguides
(130.2755) Integrated optics : Glass waveguides
(310.4925) Thin films : Other properties (stress, chemical, etc.)

ToC Category:
Optical Devices

History
Original Manuscript: December 7, 2007
Revised Manuscript: March 4, 2008
Manuscript Accepted: March 6, 2008
Published: April 24, 2008

Citation
Silvia Maria Pietralunga, Maddalena Ferrario, Alberto Licciardello, and Mario Martinelli, "Reflection photoelastic tomography for the detection of stress distribution in planar optical waveguides," J. Opt. Soc. Am. A 25, 1130-1141 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-5-1130


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. M. Ojha, C. Cureton, T. Bricheno, S. Day, D. Moule, A. J. Bell, and J. Taylor, “Simple method of fabricating polarization-insensitive and very low crosstalk AWG grating devices,” Electron. Lett. 34, 78-79 (1998). [CrossRef]
  2. H. H. Yaffe, C. H. Henry, R. F. Kazarinov, and M. A. Milbrodt, “Polarization-independent silica-on-silicon Mach-Zehnder interferometers,” J. Lightwave Technol. 12, 64-67 (1994). [CrossRef]
  3. S. Suzuki, S. Sumida, Y. Inoue, M. Ishii, and Y. Ohmori, “Polarization-insensitive arrayed-waveguide gratings using dopant-rich silica-based glass with thermal expansion adjusted to Si substrate,” Electron. Lett. 33, 1173-1174 (1997). [CrossRef]
  4. E. Wildermuth, Ch. Nadler, M. Lanker, W. Hunziker, and H. Melchior, “Penalty-free polarization compensation of SiO2/Si arrayed waveguide grating wavelength multiplexers using stress release grooves,” Electron. Lett. 34, 1161-1163 (1998). [CrossRef]
  5. H. Takahashi, Y. Hibino, Y. Ohmori, and M. Kawachi, “Polarization-insensitive arrayed-waveguide wavelength multiplexer with birefringence compensating film,” IEEE Photonics Technol. Lett. 5, 707-709 (1993). [CrossRef]
  6. J. Canning, M. Aslund, A. Ankiewicz, M. Dainese, H. Fernando, J. K. Sahu, and L. Wosinski, “Birefringence control in plasma-enhanced chemical vapor deposition planar waveguides by ultraviolet irradiation,” Appl. Opt. 39, 4296-4299 (2000). [CrossRef]
  7. A. Kilian, J. Kirchhof, B. Kuhlow, G. Przyrembel, and W. Wischmann., “Birefringence free planar optical waveguide made by flame hydrolysis deposition (FHD) through tailoring of the overcladding,” J. Lightwave Technol. 18, 193-198 (2000). [CrossRef]
  8. M. Huang, “Analytical solutions for thermal stresses in buried channel waveguides,” IEEE J. Quantum Electron. 40, 1562-1568 (2004). [CrossRef]
  9. X. Zhao, Y. Z. Xu, and C. Li, “Birefringence control in optical planar waveguide,” J. Lightwave Technol. 21, 2352-2357 (2003). [CrossRef]
  10. M. Huang, “The influence of light propagation direction on the stress-induced polarization dependence of silicon waveguides,” IEEE Photonics Technol. Lett. 18, 1314-1316 (2006) and references therein. [CrossRef]
  11. O. Du-Nour and Y. Ish-Shalom, “Method and apparatus for measuring stress in semiconductor wafer,” U.S. patent 0,098,704 (May 29, 2003), http://v3.espacenet.com.
  12. Y. S. Kim, J. R. Jeong, and S. C. Shin, “Apparatus for measuring stress in a thin film and method of manufacturing a probe used therefor,” U.S. patent 6,476,906 (November 5, 2002), http://v3.espacenet.com.
  13. D. S. Kurtz, “Apparatus for rapid in-situ X-ray stress measurement during thermal cycling of semiconductor wafers,” U.S. patent 5,848,122 (December 8, 1998), http://v3.espacenet.com.
  14. M. Yamada, K. Ito, and M. Fukuzawa, “Photoelastic characterization of undoped semi-insulating GaAs wafers with a high-spatial-resolution infrared polariscope,” in Proceedings of the IEEE SIMC-9 (IEEE, 1996), pp. 177-180.
  15. M. Fukuzawa and M. Yamada, “Photoelastic characterization of Si wafers by scanning infrared polariscope,” J. Cryst. Growth 229, 22-25 (2001). [CrossRef]
  16. M. Yamada and T. Chu, “Microscopic observation of strain induced in heteropitaxial layers with reflection type of infrared polariscope,” J. Cryst. Growth 210, 102-106 (2000). [CrossRef]
  17. T. Abe, Y. Mitsunaga, and H. Koga, “Photoelastic computer tomography: a novel measurement method for axial residual stress profile in optical fibers,” J. Opt. Soc. Am. A 3, 133-138 (1986). [CrossRef]
  18. J.-H. Kim, S.-H. Oh, Y.-W. Park, U.-C. Peak, and D. Y. Kim, “Apparatus and method for measuring residual stress and photoelastic effect of optical fiber,” U.S. patent 01,26,944 (September 12, 2002), http://v3.espacenet.com.
  19. S.-I. Ro, H.-C. Kim, and Y.-W. Park, “Residual stress measuring system for optical fiber,” European patent 1,411,334 (April 21, 2004), http://v3.espacenet.com.
  20. Y. Park, T.-J. Ahn, Y. H. Kim, W.-T. Han, U.-C. Peak, and D. Y. Kim, “Measurement method for profiling the residual stress and the strain-optic coefficient of an optical fiber,” Appl. Opt. 41, 21-26 (2002). [CrossRef] [PubMed]
  21. M. Ferrario, S. M. Pietralunga, M. Torregiani, and M. Martinelli, “Modification of local stress-induced birefringence in low-PMD spun fibers evaluated by high-resolution optical tomography,” IEEE Photonics Technol. Lett. 16, 2634-2636 (2004). [CrossRef]
  22. J. R. Shewchuk, “An introduction to the conjugate gradient method without the agonizing pain,” http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf. (August 1994).
  23. A. E. Puro and K.-J. E. Kell, “Complete determination of stress in fiber preforms of arbitrary cross section,” J. Lightwave Technol. 10, 1010-1014 (1992). [CrossRef]
  24. Y. Park, U.-C. Peak, and D. Y. Kim, “Characterization of a stress-applied polarization-maintaining (PM) fiber through photoelastic tomography,” J. Lightwave Technol. 21, 997-1004 (2003). [CrossRef]
  25. A. C. Kak and M. Slaney, “Algorithms for reconstruction with nondiffracting sources,” in Principles of Computerized Tomographic Imaging (IEEE, 1988), pp. 49-112.
  26. A. C. Kak and M. Slaney, “Reflection tomography,” in Principles of Computerized Tomographic Imaging (IEEE, 1988), pp. 297-322.
  27. P. N. T. Wells, Biomedical Ultrasonics (Academic, 1977).
  28. X. Chang, “Relationship between ray distribution and reconstructed velocity image in reflection tomography,” J. Appl. Geophys. 35, 145-150 (1996). [CrossRef]
  29. D. Churchill, S. Padina, and R. P. Bording, “Seismic tomography as a high performance application,” in Proceedings of the 20th International Symposium on High-Performance Computing in an Advanced Collaborative Enviromental (HPCS'06) (IEEE, 2006), pp. 32-39. [CrossRef]
  30. S. Cardimona, “Subsurface investigation using ground penetrating radar,” http://www.dot.ca.gov/hq/esc/geotech/gg/geophysics2002/059cardimona_%20radar_overview.pdf. (Retrieved March 26, 2008).
  31. L. Crocco and F. Soldovieri, “GPR prospecting in a layered medium via microwave tomography,” Ann. Geophys. (Germany) 43, 559-572 (2003).
  32. P. D. Walker and M. R. Bell, “Subsurface permittivity estimation from ground-penetrating radar measurements,” in Proceedings of IEEE International Radar Conference (IEEE, 2000), pp. 341-346.
  33. X. Cheng and D. Boas, “Diffuse optical reflection tomography with continuous-wave illumination,” Opt. Express 3, 118-123 (1998). [CrossRef] [PubMed]
  34. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 2002).
  35. A. C. Kak and M. Slaney, “Aliasing artifacts and noise in CT images,” in Principles of Computerized Tomographic Imaging (IEEE, 1988), pp. 177-201.
  36. P. S. Theocaris and E. E. Gdoutos, “Description of polarized light,” in Matrix Theory of Photoelasticity (Springer-Verlag, 1979), pp. 20-44.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited