OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 1147–1155

Warm-started wavefront reconstruction for adaptive optics

Laurent Lessard, Matthew West, Douglas MacMynowski, and Sanjay Lall  »View Author Affiliations


JOSA A, Vol. 25, Issue 5, pp. 1147-1155 (2008)
http://dx.doi.org/10.1364/JOSAA.25.001147


View Full Text Article

Enhanced HTML    Acrobat PDF (271 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Future extreme adaptive optics (ExAO) systems have been suggested with up to 10 5 sensors and actuators. We analyze the computational speed of iterative reconstruction algorithms for such large systems. We compare a total of 15 different scalable methods, including multigrid, preconditioned conjugate-gradient, and several new variants of these. Simulations on a 128 × 128 square sensor/actuator geometry using Taylor frozen-flow dynamics are carried out using both open-loop and closed-loop measurements, and algorithms are compared on a basis of the mean squared error and floating-point multiplications required. We also investigate the use of warm starting, where the most recent estimate is used to initialize the iterative scheme. In open-loop estimation or pseudo-open-loop control, warm starting provides a significant computational speedup; almost every algorithm tested converges in one iteration. In a standard closed-loop implementation, using a single iteration per time step, most algorithms give the minimum error even in cold start, and every algorithm gives the minimum error if warm started. The best algorithm is therefore the one with the smallest computational cost per iteration, not necessarily the one with the best quasi-static performance.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(010.7350) Atmospheric and oceanic optics : Wave-front sensing

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: November 15, 2007
Revised Manuscript: March 10, 2008
Manuscript Accepted: March 10, 2008
Published: April 24, 2008

Citation
Laurent Lessard, Matthew West, Douglas MacMynowski, and Sanjay Lall, "Warm-started wavefront reconstruction for adaptive optics," J. Opt. Soc. Am. A 25, 1147-1155 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-5-1147


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. P. Wallner, “Optimal wave-front correction using slope measurements,” J. Opt. Soc. Am. 73, 1771-1776 (1983). [CrossRef]
  2. B. L. Ellerbroek, “Efficient computation of minimum-variance wave-front reconstructors with sparse matrix techniques,” J. Opt. Soc. Am. A 19, 1803-1816 (2002). [CrossRef]
  3. L. Gilles, C. R. Vogel, and B. L. Ellerbroek, “Multigrid preconditioned conjugate-gradient method for large-scale wave-front reconstruction,” J. Opt. Soc. Am. A 19, 1817-1822 (2002). [CrossRef]
  4. L. Gilles, “Order-N sparse minimum-variance open-loop reconstructor for extreme adaptive optics,” Opt. Lett. 28, 1927-1929 (2003). [CrossRef] [PubMed]
  5. Q. Yang, C. R. Vogel, and B. L. Ellerbroek, “Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography,” Appl. Opt. 45, 5281-5293 (2006). [CrossRef] [PubMed]
  6. L. A. Poyneer, D. T. Gavel, and J. M. Brase, “Fast wave-front reconstruction in large adaptive optics systems with use of the Fourier transform,” J. Opt. Soc. Am. A 19, 2100-2111 (2002). [CrossRef]
  7. H. Ren, R. Dekany, and M. Britton, “Large-scale wave-front reconstruction for adaptive optics systems by use of a recursive filtering algorithm,” Appl. Opt. 44, 2626-2637 (2005). [CrossRef] [PubMed]
  8. D. G. MacMartin, “Local, hierarchic, and iterative reconstructors for adaptive optics,” J. Opt. Soc. Am. A 20, 1084-1093 (2003). [CrossRef]
  9. L. Gilles, “Closed-loop stability and performance analysis of least-squares and minimum-variance control algorithms for multiconjugate adaptive optics,” Appl. Opt. 44, 993-1002 (2005). [CrossRef] [PubMed]
  10. B. L. Ellerbroek and C. R. Vogel, “Simulations of closed-loop wavefront reconstruction for multiconjugate adaptive optics on giant telescopes,” Proc. SPIE 5169, 206-217 (2003). [CrossRef]
  11. L. Gilles, B. Ellerbroek, and C. Vogel, “A comparison of multigrid V-cycle versus Fourier domain preconditioning for laser guide star atmospheric tomography,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM, OSA Technical Digest (CD) (Optical Society of America, 2007), paper JTuA1. [PubMed]
  12. D. T. Gavel and D. Wiberg, “Toward Strehl-optimizing adaptive optics controllers,” Proc. SPIE 4839, 890-901 (2003). [CrossRef]
  13. P. Piatrou and M. Roggemann, “Performance analysis of Kalman filter and minimum variance controllers for multiconjugate adaptive optics,” Proc. SPIE 5894, 288-296 (2005).
  14. L. A. Poyneer, B. A. Macintosh, and J.-P. Véran, “Fourier transform wavefront control with adaptive prediction of the atmosphere,” J. Opt. Soc. Am. A 24, 2645-2660 (2007). [CrossRef]
  15. R. N. Paschall and D. J. Anderson, “Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements,” Appl. Opt. 32, 6347-6358 (1993). [CrossRef] [PubMed]
  16. B. Le Roux, J.-M. Conan, C. Kulcsár, H.-F. Raynaud, L. M. Mugnier, and T. Fusco, “Optimal control law for classical and multiconjugate adaptive optics,” J. Opt. Soc. Am. A 21, 1261-1276 (2004). [CrossRef]
  17. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford U. Press, 1998).
  18. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  19. C. R. Vogel and Q. Yang, “Multigrid algorithm for least-squares wavefront reconstruction,” Appl. Opt. 45, 705-715 (2006). [CrossRef] [PubMed]
  20. U. Trottenberg, A. Schüller, and C. W. Oosterlee, Multigrid Methods (Academic, 2000).
  21. M. C. Britton, “Arroyo C++ library: object oriented class libraries for the simulation of electromagnetic wave propagation through turbulence,” http://eraserhead.caltech.edu/arroyo/arroyo.html (April 8, 2008).
  22. M. C. Britton, “Arroyo,” Proc. SPIE 5497, 290-300 (2004). [CrossRef]
  23. B. L. Ellerbroek and F. J. Rigaut, “Scaling multiconjugate adaptive optics performance estimates to extremely large telescopes,” Proc. SPIE 4007, 1088-1099 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited