OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 5 — May. 1, 2008
  • pp: 1181–1189

Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic

David H. Wojtas, Bing Wu, Peter K. Ahnelt, Philip J. Bones, and R. P. Millane  »View Author Affiliations

JOSA A, Vol. 25, Issue 5, pp. 1181-1189 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1264 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An algorithm is presented for processing and analysis of differential interference contrast (DIC) microscopy images of the fovea to study the cone mosaic. The algorithm automatically locates the cones and their boundaries in such images and is assessed by comparison with results from manual analysis. Additional algorithms are presented that analyze the cone positions to extract information on cone neighbor relationships as well as the short-range order and domain structure of the mosaic. The methods are applied to DIC images of the human fovea.

© 2008 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(180.3170) Microscopy : Interference microscopy
(330.5310) Vision, color, and visual optics : Vision - photoreceptors

ToC Category:
Image Processing

Original Manuscript: June 1, 2007
Revised Manuscript: March 19, 2008
Manuscript Accepted: March 19, 2008
Published: April 28, 2008

Virtual Issues
Vol. 3, Iss. 6 Virtual Journal for Biomedical Optics

David H. Wojtas, Bing Wu, Peter K. Ahnelt, Philip J. Bones, and R. P. Millane, "Automated analysis of differential interference contrast microscopy images of the foveal cone mosaic," J. Opt. Soc. Am. A 25, 1181-1189 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. K. Ahnelt and H. Kolb, “The mammalian photoreceptor mosaic - adaptive design,” Prog. Retin Eye Res. 19, 711-777 (2000). [CrossRef] [PubMed]
  2. J. E. Cook, “Spatial regularity among retinal neurons,” in The Visual Neurosciences, L.M.Chalupa and J.S.Warner eds., A Bradford Book (Massachusetts Institute of Technology, 2004), pp. 485-495.
  3. J. I. Yellott, “Spectral-analysis of spatial sampling by photoreceptors--topological disorder prevents aliasing,” Vision Res. 22, 1205-1210 (1982). [CrossRef] [PubMed]
  4. J. I. Yellott, “Spectral consequences of photoreceptor sampling in the rhesus retina,” Science 221, 382-385 (1983). [CrossRef] [PubMed]
  5. D. R. Williams and R. Collier, “Consequences of spatial sampling by a human photoreceptor mosaic,” Science 221, 385-387 (1983). [CrossRef] [PubMed]
  6. D. R. Williams, “Aliasing in human foveal vision,” Vision Res. 25, 195-205 (1985). [CrossRef] [PubMed]
  7. D. Pum, P. K. Ahnelt, and M. Grasl, “Iso-orientation areas in the foveal cone mosaic,” Visual Neurosci. 5, 511-523 (1990). [CrossRef]
  8. J. Hirsch and R. Hylton, “Quality of the primate photoreceptor lattice and limits of spatial vision,” Vision Res. 24, 347-355 (1984). [CrossRef] [PubMed]
  9. A. J. Ahumada, Jr., and A. Poirson, “Cone sampling array models,” J. Opt. Soc. Am. A 4, 1493-1502 (1987). [CrossRef] [PubMed]
  10. J. Hirsch and C. A. Curcio, “The spatial resolution capacity of human foveal retina,” Vision Res. 29, 1095-1101 (1989). [CrossRef] [PubMed]
  11. J. L. Duncan, Y. Zhang, J. Gandhi, C. Nakanishi, M. Othman, K. E. Branham, A. Swaroop, and A. Roorda, “High-resolution imaging with adaptive optics in patients with inherited retinal degeneration,” Invest. Ophthalmol. Visual Sci. 48, 3283-3291 (2007). [CrossRef]
  12. J. I. Wolfing, M. Chung, J. Carroll, A. Roorda, and D. R. Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology (Philadelphia) 113, 1014-1019 (2006). [CrossRef]
  13. C. Yuodelis and A. Hendrickson, “A qualitative and quantitative analysis of the human fovea during development,” Vision Res. 26, 847-855 (1986). [CrossRef] [PubMed]
  14. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosiac,” J. Neurosci. 25, 9669-9679 (2005). [CrossRef] [PubMed]
  15. M. Xiao and A. Hendrickson, “Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones,” J. Comp. Neurol. 425, 545-559 (2000). [CrossRef] [PubMed]
  16. K. Bumsted and A. Hendrickson, “Distribution and development of short-wavelength cones differ between Macaca monkey and human fovea,” J. Comp. Neurol. 403, 502-516 (1999). [CrossRef] [PubMed]
  17. E. E. Cornish, A. E. Hendrickson, and J. M. Provis, “Distribution of short-wavelength-sensitive cones in human fetal and postnatal retina: early development of spatial order and density profiles,” Vision Res. 44, 2019-2026 (2004). [CrossRef] [PubMed]
  18. R. J. Zawadski, S. S. Choi, S. M. Jones, S. S. Oliver, and J. S. Werner, “Adaptive optics-optical coherence tomography: optimizing visualization of microscopic retinal structures in three dimensions,” J. Opt. Soc. Am. A 24, 1373-1383 (2007). [CrossRef]
  19. K. Y. Li and A. Roorda, “Automated identification of cone photoreceptors in adaptive optics retinal images,” J. Opt. Soc. Am. A 24, 1358-1363 (2007). [CrossRef]
  20. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520-522 (1999). [CrossRef] [PubMed]
  21. A. Roorda and D. R. Williams, “Optical fiber properties of individual human cones,” J. Math. Imaging Vision 2, 404-412 (2002).
  22. J. Carroll, M. Neitz, H. Hofer, J. Neitz, and D. R. Williams, “Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness,” Proc. Natl. Acad. Sci. U.S.A. 101, 8461-8466 (2004). [CrossRef] [PubMed]
  23. D. B. Murphy, Fundamentals of Light Microscopy and Digital Imaging (Wiley, 2001).
  24. C. A. Curcio, K. R. Sloan, R. E. Kalina, and A. E. Hendrickson, “Human photoreceptor topography,” J. Comp. Neurol. 292, 497-523 (1990). [CrossRef] [PubMed]
  25. O. Packer, A. E. Hendrickson, and C. A. Curcio, “Photoreceptor topography of the retina in the adult pigtail macaque (macaca nemestrina),” J. Comp. Neurol. 288, 165-183 (1989). [CrossRef] [PubMed]
  26. B. Xue, S. S. Choi, N. Doble, and J. S. Werner, “Photoreceptor counting and montaging of en-face retinal images from an adaptive optics fundus camera,” J. Opt. Soc. Am. A 24, 1364-1372 (2007). [CrossRef]
  27. E. B. van Munster, L. J. van Vliet, and J. A. Aten, “Reconstruction of optical pathlength distributions from images obtained by a wide-field differential interference microscope,” J. Microsc. 188, 149-157 (1997). [CrossRef]
  28. C. Preza, D. L. Snyder, and J. A. Conchello, “Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy,” J. Opt. Soc. Am. A 16, 2185-2199 (1999). [CrossRef]
  29. B. Heise, A. Sonnleitner, and E. P. Klement, “DIC image reconstruction on large cell scans,” Microsc. Res. Tech. 66, 312-320 (2005). [CrossRef] [PubMed]
  30. D. Young, C. A. Glasby, A. J. Gray, and N. J. Martin, “Towards automatic cell identification in DIC microscopy,” J. Microsc. 192, 186-193 (1998). [CrossRef] [PubMed]
  31. L. Vincent, “Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms,” IEEE Trans. Image Process. 16, 176-201 (1993). [CrossRef]
  32. S. L. Polyak, The Retina (University of Chicago Press, 1941).
  33. W. Brostow, J. P. Dussaults, and B. L. Fox, “Construction of Voronoi polyhedra,” J. Comput. Phys. 29, 81-92 (1978). [CrossRef]
  34. W. S. Cleveland, “Robust locally weighted regression and smoothing scatter plots,” J. Am. Stat. Assoc. 74, 829-836 (1979). [CrossRef]
  35. J. E. Dowling, “Foveal receptors of the monkey retina: fine structure,” Science 147, 57-59 (1965). [CrossRef] [PubMed]
  36. W. Krebs and I. P. Krebs, “Quantitative morphology of the central fovea in the primate retina,” Am. J. Anat. 184, 225-236 (1989). [CrossRef] [PubMed]
  37. B. Borwein, D. Borwein, J. Medeiros, and J. W. McGowan, “The ultrastructure of monkey foveal photoreceptors, with special reference to the structure, shape, size, and spacing of the foveal cones,” Am. J. Anat. 159, 125-146 (1980). [CrossRef] [PubMed]
  38. C. A. Curcio and K. R. Sloan, “Packing geometry of human cone photoreceptors: Variation with eccentricity and evidence for local anisotropy,” Visual Neurosci. 9, 169-180 (1992). [CrossRef]
  39. C. A. Curcio, K. R. Sloan, O. Packer, A. E. Hendrikson, and R. E. Kalina, “Distribution of cones in human and monkey retina: individual variability and radial symmetry,” Science 236, 579-582 (1987). [CrossRef] [PubMed]
  40. J. Hirsch and W. H. Miller, “Does cone positional disorder limit resolution,” J. Opt. Soc. Am. A 4, 1481-1492 (1987). [CrossRef] [PubMed]
  41. P. K. Ahnelt, “The photoreceptor mosaic,” Eye 12, 531-540 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited