OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 6 — Jun. 1, 2008
  • pp: 1240–1245

Retardation correction for photoelastic modulator-based multichannel reflectance difference spectroscopy

C. G. Hu, L. D. Sun, Y. N. Li, M. Hohage, J. M. Flores-Camacho, X. T. Hu, and P. Zeppenfeld  »View Author Affiliations

JOSA A, Vol. 25, Issue 6, pp. 1240-1245 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (460 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The wavelength dependence of the retardation induced by a photoelastic modulator (PEM) is a central issue in multichannel modulator-based spectroscopic ellipsometry and reflectance difference spectroscopy (RDS), where the optical signal is detected simultaneously at different wavelengths. Here we present a refined analysis of the modulator crystal’s retardation and its effect on the signal quality. Two retardation correction schemes that take into account the actual wavelength dependence of the stress-optic coefficient are introduced. It is demonstrated experimentally that both methods provide a better correction than the procedure currently used in multichannel RDS. We define quality factors to evaluate the actual performance of the multichannel detection system as compared with a wavelength adaptive single-channel experiment. These quality factors thus provide a useful guideline for choosing the appropriate PEM retardation or reference wavelength in a multichannel experiment.

© 2008 Optical Society of America

OCIS Codes
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(230.4110) Optical devices : Modulators
(240.5698) Optics at surfaces : Reflectance anisotropy spectroscopy
(240.6380) Optics at surfaces : Spectroscopy, modulation

ToC Category:
Optical Devices

Original Manuscript: October 29, 2007
Revised Manuscript: February 6, 2008
Manuscript Accepted: March 19, 2008
Published: May 7, 2008

C. G. Hu, L. D. Sun, Y. N. Li, M. Hohage, J. M. Flores-Camacho, X. T. Hu, and P. Zeppenfeld, "Retardation correction for photoelastic modulator-based multichannel reflectance difference spectroscopy," J. Opt. Soc. Am. A 25, 1240-1245 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Weightman, D. S. Martin, R. J. Cole, and T. Ferrell, “Reflection anisotropy spectroscopy,” Rep. Prog. Phys. 68, 1251-1341 (2005). [CrossRef]
  2. D. E. Aspnes and A. A. Studna, “Anisotropies in the above-band-gap optical spectra of cubic semiconductors,” Phys. Rev. Lett. 54, 1956-1959 (1985). [CrossRef] [PubMed]
  3. D. E. Aspnes, “Above-bandgap optical anisotropies in cubic semiconductors: a visible-near ultraviolet probe of surfaces,” J. Vac. Sci. Technol. B 3, 1498-1506 (1985). [CrossRef]
  4. J. C. Kemp, “Piezo-optical birefringence modulators: new use for a long-known effect,” J. Opt. Soc. Am. 59, 950-954 (1969).
  5. D. E. Aspnes, J. P. Harbison, A. A. Studna, and L. T. Florez, “Application of reflectance difference spectroscopy to molecular-beam epitaxy growth of GaAs and AlAs,” J. Vac. Sci. Technol. A 6, 1327-1332 (1988). [CrossRef]
  6. O. Acher, E. Bigan, and B. Drévillon, “Improvements of phase-modulated ellipsometry,” Rev. Sci. Instrum. 60, 65-77 (1989). [CrossRef]
  7. C. Kaspari, M. Pristovsek, and W. Richter, “A fast reflectance anisotropy spectrometer for in situ growth monitoring,” Phys. Status Solidi B 242, 2561-2569 (2005). [CrossRef]
  8. P. Harrison, T. Farrell, A. Maunder, C. I. Smith, and P. Weightman, “A rapid reflectance anisotropy spectrometer,” Meas. Sci. Technol. 12, 2185-2191 (2001). [CrossRef]
  9. O. Acher and B. Drévillon, “A reflectance anisotropy spectrometer for real-time measurements,” Rev. Sci. Instrum. 63, 5332-5339 (1992). [CrossRef]
  10. C. J. Canit and J. Badoz, “New design for a photoelastic modulator,” Appl. Opt. 22, 592-594 (1983). [CrossRef] [PubMed]
  11. F. A. Modine, G. E. Jellison, Jr., and G. R. Gruzalski, “Errors in ellipsometry measurements made with a photoelastic modulator,” J. Opt. Soc. Am. 73, 892-900 (1983). [CrossRef]
  12. G. E. Jellison, Jr., and F. A. Modine, “Accurate calibration of a photo-elastic modulator in polarization modulation ellipsometry,” Proc. SPIE 1166, 231-241 (1989).
  13. G. E. Jellison, Jr., and F. A. Modine, “Two-channel polarization modulation ellipsometer,” Appl. Opt. 29, 959-974 (1990). [CrossRef] [PubMed]
  14. G. E. Jellison, Jr., and F. A. Modine, “Two-modulator generalized ellipsometry: experiment and calibration,” Appl. Opt. 36, 8184-8189 (1997). [CrossRef]
  15. J. Badoz, M. P. Silverman, and J. C. Canit, “A new method of a photoelastic modulator with distributed birefringence,” Proc. SPIE 1166, 478-488 (1989).
  16. J. Badoz, M. P. Silverman, and J. C. Canit, “Wave propagation through a medium with static and dynamic birefringence: theory of the photoelastic modulator,” J. Opt. Soc. Am. A 7, 672-682 (1990). [CrossRef]
  17. F. A. Modine and G. E. Jellison, Jr., “Errors in polarization measurements due to static retardation in photoelastic modulators,” Appl. Phys. Commun. 12, 121-139 (1993).
  18. D. Yang, J. C. Canit, and E. Gaignebet, “Photoelastic modulator: polarization modulation and phase modulation,” J. Opt. (Paris) 26, 151-159 (1995). [CrossRef]
  19. Dispersion equations, http://www.cvilaser.com/Common/PDFs/Index_of_Refraction.pdf.
  20. T. C. Oakberg, “Relative variation of stress-optic coefficient with wavelength in fused silica and calcium fluoride,” Proc. SPIE 3754, 226-234 (1999). [CrossRef]
  21. J-K. Hansen, “Electronic and optical surface properties of noble metals studied by reflection anisotropy spectroscopy,” Ph.D. dissertation (University of Trondheim, 2000).
  22. M. Hohage, L. D. Sun, and P. Zeppenfeld, “Reflectance difference spectroscopy--a powerful tool to study adsorption and growth,” Appl. Phys. A 80, 1005-1010 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited