OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 7 — Jul. 1, 2008
  • pp: 1486–1496

Predictive wavefront control for adaptive optics with arbitrary control loop delays

Lisa Poyneer and Jean-Pierre Véran  »View Author Affiliations


JOSA A, Vol. 25, Issue 7, pp. 1486-1496 (2008)
http://dx.doi.org/10.1364/JOSAA.25.001486


View Full Text Article

Enhanced HTML    Acrobat PDF (241 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a modification of the closed-loop state space model for adaptive optics control that allows delays that are a noninteger multiple of the system frame rate. We derive the new forms of the predictive Fourier control Kalman filters for arbitrary delays and show that they are linear combinations of the whole-frame delay terms. This structure of the controller is independent of the delay. System stability margins and residual error variance both transition gracefully between integer-frame delays.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

ToC Category:
Atmospheric and oceanic optics

History
Original Manuscript: November 13, 2007
Revised Manuscript: March 14, 2008
Manuscript Accepted: April 7, 2008
Published: June 3, 2008

Citation
Lisa Poyneer and Jean-Pierre Véran, "Predictive wavefront control for adaptive optics with arbitrary control loop delays," J. Opt. Soc. Am. A 25, 1486-1496 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-7-1486


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. N. Paschall and D. J. Anderson, “Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements,” Appl. Opt. 32, 6347-6358 (1993). [CrossRef] [PubMed]
  2. D. T. Gavel and D. Wiberg, “Towards Strehl-optimizing adaptive optics controllers,” Proc. SPIE 4839, 890-901 (2002). [CrossRef]
  3. B. Le Roux, J.-M. Conan, C. Kulcsar, H.-F. Raynaud, L. M. Mugnier, and T. Fusco, “Optimal control law for classical and multiconjugate adaptive optics,” J. Opt. Soc. Am. A 21, 1261-1276 (2004). [CrossRef]
  4. C. Kulcsár, H.-F. Raynaud, C. Petit, J.-M. Conan, and P. V. de Lesegno, “Optimal control, observers and integrators in adaptive optics,” Opt. Express 14, 7464-7476 (2006). [CrossRef] [PubMed]
  5. D. Looze, “Discrete-time model of an adaptive optics system,” J. Opt. Soc. Am. A 24, 2850-2863 (2007). [CrossRef]
  6. C. Petit, J.-M. Conan, C. Kulcsar, H.-F. Raynaud, T. Fusco, J. Montri, and D. Rabaud, “First laboratory demonstration of closed-loop Kalman based optimal control for vibration filtering and simplified MCAO,” Proc. SPIE 6272, 62721T (2006). [CrossRef]
  7. K. Hinnen, M. Verhagen, and N. Doelman, “Exploiting the spatiotemporal correlation in adaptive optics using data-driven H2-optimal control,” J. Opt. Soc. Am. A 24, 1714-1725 (2007). [CrossRef]
  8. L. A. Poyneer, B. A. Macintosh, and J.-P. Véran, “Fourier transform wavefront control with adaptive prediction of the atmosphere,” J. Opt. Soc. Am. A 24, 2645-2660 (2007). [CrossRef]
  9. L. A. Poyneer and J.-P. Véran, “Optimal modal Fourier transform wave-front control,” J. Opt. Soc. Am. A 22, 1515-1526 (2005). [CrossRef]
  10. P.-Y.Madec, “Control techniques,” in Adaptive Optics in Astronomy, F.Roddier, ed. (Cambridge U. Press, 1999), pp. 131-154. [CrossRef]
  11. B. A. Macintosh, “Gemini planet imager preliminary design document volume 2: instrument design,” Tech. Rep. UCRL-TR-230900 (Lawrence Livermore National Laboratory, 2007).
  12. M. Frigo and S. G. Johnson, “The design and implementation of FFTW3,” Proc. IEEE 93, 216-231 (2005). [CrossRef]
  13. E. Gendron and P. Léna, “Astronomical adaptive optics I. Modal control optimization,” Astron. Astrophys. 291, 337-347 (1994).
  14. G. Clark, S. Parker, and S. Mitra, “A unified approach to time- and frequency-domain realization of FIR adaptive digital filters,” IEEE Trans. Acoust., Speech, Signal Process. 31, 1073-1083 (1983). [CrossRef]
  15. W. Arnold and A. Laub, “Generalized eigenproblem algorithms and software for algebraic Riccati equations,” Proc. IEEE 72, 1746-1754 (1984). [CrossRef]
  16. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing (Prentice Hall, 1999).
  17. A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals and Systems, 2nd ed. (Prentice Hall, 1997).
  18. C. Dessenne, P.-Y. Madec, and G. Rousset, “Optimization of a predictive controller for closed-loop adaptive optics,” Appl. Opt. 37, 4623-4633 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited