OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 7 — Jul. 1, 2008
  • pp: 1762–1771

Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography

Chandra Sekhar Seelamantula, Martin L. Villiger, Rainer A. Leitgeb, and Michael Unser  »View Author Affiliations

JOSA A, Vol. 25, Issue 7, pp. 1762-1771 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (1120 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We address the problem of tomogram reconstruction in frequency-domain optical-coherence tomography. We propose a new technique for suppressing the autocorrelation artifacts that are commonly encountered with the conventional Fourier-transform-based approach. The technique is based on the assumptions that the scattering function is causal and that the intensity of the light reflected from the object is smaller than that of the reference. The technique is noniterative, nonlinear, and yields an exact solution in the absence of noise. Results on synthesized data and experimental measurements show that the technique offers superior quality reconstruction and is computationally more efficient than the iterative technique reported in the literature.

© 2008 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.1655) Microscopy : Coherence tomography
(110.6955) Imaging systems : Tomographic imaging

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: November 9, 2007
Manuscript Accepted: March 20, 2008
Published: June 26, 2008

Virtual Issues
Vol. 3, Iss. 8 Virtual Journal for Biomedical Optics

Chandra Sekhar Seelamantula, Martin L. Villiger, Rainer A. Leitgeb, and Michael Unser, "Exact and efficient signal reconstruction in frequency-domain optical-coherence tomography," J. Opt. Soc. Am. A 25, 1762-1771 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995). [CrossRef]
  2. E. Wolf, “Three-dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153-156 (1969). [CrossRef]
  3. G. Hausler and M. W. Lindner, “Coherence radar and spectral radar±new tools for dermatological analysis,” J. Biomed. Opt. 3, 21-31 (1998). [CrossRef]
  4. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical-coherence tomography of the human retina and optic nerve,” Opt. Express 12, 367-376 (2004). [CrossRef] [PubMed]
  5. M. Wojtkowski, T. Bajraszewski, I. Gorczynska, P. Targowski, A. Kowalczyk, W. Wasilewski, and C. Radzewicz, “Ophthalmic imaging by spectral optical-coherence tomography,” Am. J. Ophthalmol. 138, 412-419 (2004). [CrossRef] [PubMed]
  6. U. Schmidt-Erfurth, R. A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A. F. Fercher, and W. Drexler, “Three-dimensional ultrahigh-resolution optical-coherence tomography of macular diseases,” Invest. Ophthalmol. Visual Sci. 46, 3393-3402 (2005). [CrossRef]
  7. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. Fercher, “In vivo human retinal imaging by Fourier-domain optical-coherence tomography,” J. Biomed. Opt. 7, 457-463 (2002). [CrossRef] [PubMed]
  8. A. F. Fercher, R. A. Leitgeb, C. K. Hitzenberger, H. Sattmann, and M. Wojtkowski, “Complex spectral interferometry OCT,” Proc. SPIE 3564, 173-178 (1999). [CrossRef]
  9. M. Wojtkowski, A. Kowalczyk, R. A. Leitgeb, and A. Fercher, “Full-range complex spectral optical-coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415-1417 (2002). [CrossRef]
  10. Y. Yasuno, S. Makita, T. Endo, G. Aoki, H. Sumimura, M. Itoh, and T. Yatagai, “One-shot-phase-shifting Fourier-domain optical-coherence tomography by reference wavefront tilting,” Opt. Express 12, 6184-6191 (2004). [CrossRef] [PubMed]
  11. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, “Phase-shifting algorithm to achieve high-speed long-depth-range probing by frequency-domain optical-coherence tomography,” Opt. Lett. 28, 2201-2203 (2003). [CrossRef] [PubMed]
  12. M. A. Choma, C. Yang, and J. A. Izatt, “Instantaneous quadrature low-coherence interferometry with 3×3 fiber-optic couplers,” Opt. Lett. 28, 2162-2164 (2003). [CrossRef] [PubMed]
  13. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, “Complex ultrahigh resolution Fourier-domain optical-coherence tomography,” Proc. SPIE 6079, 60790 (2006). [CrossRef]
  14. A. Szkulmowska, M. Wojtkowski, I. Gorczynska, T. Bajraszewski, M. Szkulmowski, P. Targowski, A. Kowalczyk, and J. J. Kaluzny, “Coherent noise-free ophthalmic imaging by spectral optical coherence tomography,” J. Phys. D 38, 2606-2611 (2005). [CrossRef]
  15. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758-2769 (1982). [CrossRef] [PubMed]
  16. H. H. Bauschke, P. L. Combettes, and D. Luke, “Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization,” J. Opt. Soc. Am. A 19, 1334-1345 (2002). [CrossRef]
  17. T. F. Quatieri, Jr. and A. V. Oppenheim, “Iterative techniques for minimum phase signal reconstruction from phase or magnitude,” IEEE Trans. Acoust., Speech, Signal Process. 29, 1187-1193 (1981). [CrossRef]
  18. N. Nakajima, “Phase retrieval using the logarithmic Hilbert transform and the Fourier-series expansion,” J. Opt. Soc. Am. A 5, 257-262 (1988). [CrossRef]
  19. A. Ozcan, M. J. F. Digonnet, and G. S. Kino, “Minimum-phase-function-based processing in frequency-domain optical-coherence tomography systems,” J. Opt. Soc. Am. A 23, 1669-1677 (2006). [CrossRef]
  20. A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 2nd ed. (Prentice-Hall, 1999).
  21. D. G. Childers, D. P. Skinner, and R. C. Kemerait, “The cepstrum: a guide to processing,” Proc. IEEE 65, 1428-1443 (1977). [CrossRef]
  22. B. E. Bouma and G. J. Tearney, eds., Handbook of Optical Coherence Tomography (Marcel Dekker, 2002).
  23. M. Unser, “Splines: a perfect fit for signal and image processing,” IEEE Signal Process. Mag. 16, 22-38 (1999). [CrossRef]
  24. R. A. Leitgeb, M. L. Villiger, A. H. Bachmann, L. Steinmann, and T. Lasser, “Extended focus depth for Fourier-domain optical-coherence tomography,” Opt. Lett. 31, 2450-2452 (2006). [CrossRef] [PubMed]
  25. A. Rosset, J. Heuberger, and O. Ratib, “OsiriX imaging software” (2007), http://www.osirix-viewer.com/.
  26. S. Chang, X. Cai, and C. Flueraru, “Image enhancement for multilayer information retrieval by using full-field optical-coherence tomography,” Appl. Opt. 45, 5967-5975 (2006). [CrossRef] [PubMed]
  27. E. Cuche, “Numerical reconstruction of digital holograms: application to phase-contrast imaging and microscopy,” Ph.D. dissertation (Ecole polytechnique fédérale de Lausanne (EPFL), 2000).
  28. M. Liebling, T. Blu, and M. Unser, “Complex-wave retrieval from a single off-axis hologram,” J. Opt. Soc. Am. A 27, 367-377 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited