OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 7 — Jul. 1, 2008
  • pp: 1783–1789

Enhanced propagation in a plasmonic chain waveguide with nanoshell structures based on low- and high-order mode coupling

Xudong Cui and Daniel Erni  »View Author Affiliations


JOSA A, Vol. 25, Issue 7, pp. 1783-1789 (2008)
http://dx.doi.org/10.1364/JOSAA.25.001783


View Full Text Article

Enhanced HTML    Acrobat PDF (560 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We studied the performance of a plasmonic chain waveguide by employing an array of nanoshell structures. The optical properties of the proposed structures are discussed in detail with respect to the mode coupling for both low-order resonances and high-order multipolar modes. We show (a) that the choice of nanoshell particles allows an easy tuning of the structure’s resonances according to given wavelength specifications and (b) that the resonances are insensitive to the chain length when high-order multipolar modes are involved. Moreover, chain waveguides that are operated on resonant multipolar modes provide propagation lengths up to 1.88 μ m , which is beyond what is maximally achieved by conventional solid particle chains. This is attributed to the large field enhancement within metallic nanoshell structures, as well as to far-field effects, which play an important role in low-loss light guiding along nanoshell chains.

© 2008 Optical Society of America

OCIS Codes
(230.0230) Optical devices : Optical devices
(230.3120) Optical devices : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons
(290.5850) Scattering : Scattering, particles

ToC Category:
Optical Devices

History
Original Manuscript: February 1, 2008
Revised Manuscript: May 9, 2008
Manuscript Accepted: May 12, 2008
Published: June 26, 2008

Citation
Xudong Cui and Daniel Erni, "Enhanced propagation in a plasmonic chain waveguide with nanoshell structures based on low- and high-order mode coupling," J. Opt. Soc. Am. A 25, 1783-1789 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-7-1783


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824-830 (2003). [CrossRef] [PubMed]
  2. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures,” Phys. Rev. B 61, 10484 (2000). [CrossRef]
  3. J. R. Krenn, B. Lamprecht, H. Ditlbacher, G. Schider, M. Aalerno, A. Leitner, and F. R. Aussenegg, “Non-diffraction-limited light transport by gold nanowires,” Europhys. Lett. 60, 663-669 (2002). [CrossRef]
  4. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. M. Moreno, and F. J. G. Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett. 100, 023901 (2008). [CrossRef] [PubMed]
  5. M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, “Electromagnetic energy transport via linear chains of silver nanoparticles,” Opt. Lett. 23, 1331-1333 (1999). [CrossRef]
  6. M. L. Brongersma, J. W. Hartman, and H. A. Atwater, “Electromagnetic energy transfer and switching in nanoparticle chain arrays below the diffraction limit,” Phys. Rev. B 62, 16356-16359 (2000). [CrossRef]
  7. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles,” Phys. Rev. B 71, 235408 (2005). [CrossRef]
  8. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005). [CrossRef]
  9. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer-Verlag, 1995).
  10. S. J. Oldenburg, G. D. Hale, J. B. Jackson, and N. J. Halas, “Light scattering from dipole and quadrupole nanoshell antennas,” Appl. Phys. Lett. 75, 1063-1065 (1999). [CrossRef]
  11. P. Alivisatos, “The use of nanocrystals in biological detection,” Nat. Biotechnol. 22, 47-52 (2004). [CrossRef] [PubMed]
  12. N. C. Panoiu and R. M. Osgood, Jr., “Linear and nonlinear transmission of surface plasmon polaritons in an optical nanowire,” in Organic and Nanocomposite Optical Materials, Vol. 846 of the MRS Symposium Proceedings Series, A.Cartwright, T.M.Cooper, S.P.Karna, and H.Nakonishi, eds. (Materials Research Society, 2005), pp. DD5.6.1-DD5.6.6.
  13. J. L. West and N. J. Halas, “Engineered nanomaterials for biophotonics applications: Improving, sensing, imaging, and therapeutics,” Annu. Rev. Biomed. Eng. 5, 285-294 (2003). [CrossRef]
  14. COMSOL Multiphysics (Version 3.3) is a FEM-based multipurpose simulation platform, available at http://www.comsol.com.
  15. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370 (1972). [CrossRef]
  16. A. Downes and Ph. Dumas, “Chemical analysis and optical properties of metallic nanoclusters,” Appl. Surf. Sci. 770, 212-213 (2003).
  17. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81, 1762-1764 (2002). [CrossRef]
  18. B. S. Hwang, M. H. Kwon, and J. Kim, “Use of a near field optical probe to locally launch surface plasmon polaritons on plasmonic waveguides: A study by the finite difference time domain method,” Microsc. Res. Tech. 64, 453-458 (2004). [CrossRef] [PubMed]
  19. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguide,” Nat. Mater. 2, 229-232 (2003). [CrossRef] [PubMed]
  20. R. D. Waele, A. F. Koenderink, and A. Polman, “Tunable nanoscale localization of energy on plasmon particle arrays,” Nano Lett. 7, 2004-2008 (2007). [CrossRef]
  21. J. V. Hernandez, L. D. Noordam, and F. Robicheaux, “Asymmetric response in a line of optically driven metallic nanospheres,” J. Phys. Chem. B 109, 15808-15811 (2005). [CrossRef]
  22. S. A. Maier, P. G. Kik, and H. A. Atwater, “Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss,” Appl. Phys. Lett. 81, 1714-1716 (2002). [CrossRef]
  23. W. Nomura, M. Ohtsu, and T. Yatsui, “Nanodot coupler with a surface plasmon polariton condenser for optical far/near-field conversion,” Appl. Phys. Lett. 86, 181108 (2005). [CrossRef]
  24. H. Wang, D. W. Brandl, F. Lei, P. Nordlander, and N. J. Halas, “Nanorice: A hybrid plasmonic nanostructure,” Nano Lett. 6, 827-832 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited