OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1850–1860

Modified diffraction theory of Kirchhoff

Yusuf Z. Umul  »View Author Affiliations


JOSA A, Vol. 25, Issue 8, pp. 1850-1860 (2008)
http://dx.doi.org/10.1364/JOSAA.25.001850


View Full Text Article

Enhanced HTML    Acrobat PDF (585 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The diffraction theory of Kirchhoff is reinterpreted and a new form of a surface diffraction integral is developed by using the axioms of the modified theory of physical optics, which leads to the exact scattered fields by conducting bodies. The new integral is arranged according to the interpretation of Young, and the diffracted waves are expressed in terms of a line integral. The method is applied to the diffraction problem by a semi-infinite edge contour.

© 2008 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(050.1960) Diffraction and gratings : Diffraction theory
(260.0260) Physical optics : Physical optics
(260.1960) Physical optics : Diffraction theory

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 26, 2008
Revised Manuscript: May 13, 2008
Manuscript Accepted: May 15, 2008
Published: July 2, 2008

Citation
Yusuf Z. Umul, "Modified diffraction theory of Kirchhoff," J. Opt. Soc. Am. A 25, 1850-1860 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-8-1850


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. B. Baker and E. T. Copson, The Mathematical Theory of Huygens' Principle (Oxford U. Press, 1950).
  2. M. Born and E. Wolf, Principles of Optics (Cambridge U. Press, 2003).
  3. C. R. Schultheisz, “Numerical solution of the Huygens-Fresnel-Kirchhoff diffraction of spherical waves by a circular aperture,” J. Opt. Soc. Am. A 11, 774-778 (1994). [CrossRef]
  4. S. Ganci, “Equivalence between two consistent formulations of Kirchhoff's diffraction theory,” J. Opt. Soc. Am. A 5, 1626-1628 (1988). [CrossRef]
  5. P. Ya. Ufimtsev, Fundamentals of the Physical Theory of Diffraction (Wiley-IEEE, 2007). [CrossRef]
  6. W. L. Stutzman and G. A. Thiele, Antenna Theory and Design (Wiley, 1998).
  7. P. Ya. Ufimtsev, “Elementary edge waves and the physical theory of diffraction,” Electromagnetics 11, 125-160 (1991). [CrossRef]
  8. Y. Z. Umul, “Modified theory of physical optics,” Opt. Express 12, 4959-4972 (2004). [CrossRef] [PubMed]
  9. Y. Z. Umul, “Modified theory of physical optics approach to wedge diffraction problems,” Opt. Express 13, 216-224 (2005). [CrossRef] [PubMed]
  10. Y. Z. Umul, “MTPO based potential function of the boundary diffraction wave theory,” Opt. Laser Technol. 40, 769-774 (2008). [CrossRef]
  11. Y. Z. Umul, “The theory of the boundary diffraction wave for wedge diffraction,” J. Mod. Opt. 55, 1417-1426 (2008). [CrossRef]
  12. A. Rubinowicz, “Thomas Young and the theory of diffraction,” Nature 180, 160-162 (1957). [CrossRef]
  13. A. Rubinowicz, “Die beugungswelle in der Kirchoffschen theorie der beugungsercheinungen,” Ann. Phys. 4, 257-278 (1917). [CrossRef]
  14. S. Ganci, “A general solution for the half plane problem,” J. Mod. Opt. 42, 1707-1711 (1995). [CrossRef]
  15. S. Silver, Microwave Antenna Theory and Design (McGraw-Hill, 1949).
  16. Y. Z. Umul, “Modified theory of physical optics solution of the impedance half plane problem,” IEEE Trans. Antennas Propag. 54, 2048-2053 (2006). [CrossRef]
  17. J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52, 116-130 (1962). [CrossRef] [PubMed]
  18. Y. Z. Umul, “Edge-dislocation waves in the edge diffraction process by an impedance half-plane,” J. Opt. Soc. Am. A 24, 507-511 (2007). [CrossRef]
  19. K. Miyamoto and E. Wolf, “Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave--Part I,” J. Opt. Soc. Am. 52, 615-625 (1962). [CrossRef]
  20. K. Miyamoto and E. Wolf, “Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave--Part II,” J. Opt. Soc. Am. 52, 626-637 (1962). [CrossRef]
  21. A. Rubinowicz, “The Miyamoto-Wolf diffraction wave,” Prog. Opt. 4, 201-240 (1965).
  22. A. Dubra and J. A. Ferrari, “Diffracted field by an arbitrary aperture,” Am. J. Phys. 67, 87-92 (1999). [CrossRef]
  23. F. B. Hildebrand, Advanced Calculus for Applications (Prentice-Hall, 1962).
  24. A. Sommerfeld, “Matematische Theorie der Diffraction,” Math. Ann. 47, 317-374 (1896). [CrossRef]
  25. S. Ganci, “Half-plane diffraction in a case of oblique incidence,” J. Mod. Opt. 43, 2543-2551 (1996). [CrossRef]
  26. Y. Rahmat-Samii, “Keller's cone encountered at a hotel,” IEEE Antennas Propag. Mag. 49, 88-89 (2007). [CrossRef]
  27. T. B. A. Senior and P. L. E. Ushlengi, “Experimental detection of the edge-diffraction cone,” J. Electron Microsc. 60, 1448-1449 (1972).
  28. R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface,” Proc. IEEE 62, 1448-1461 (1974). [CrossRef]
  29. Y. Z. Umul, “Uniform theory for the diffraction of evanescent plane waves,” J. Opt. Soc. Am. A 24, 2426-2430 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited