OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1861–1865

Appropriate interface termination to improve imaging resolution of multilayered structures in the infrared and optical canalization regime

Xuan Li and Yi Jin  »View Author Affiliations

JOSA A, Vol. 25, Issue 8, pp. 1861-1865 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (255 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Appropriate surface termination is used to improve dramatically the subwavelength imaging resolution of a multilayered positive–negative permittivity structure operating in the infrared or optical canalization regime. The imaging resolution of the improved multilayered structure resists practical material loss well, and it is not sensitive to the thickness of the interface layers, the total thickness, nor the period of the multilayered structure. Such a structure can be used to transfer a subwavelength image to a far distance through a thick structure.

© 2008 Optical Society of America

OCIS Codes
(110.2990) Imaging systems : Image formation theory
(160.4670) Materials : Optical materials
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Thin Films

Original Manuscript: January 30, 2008
Revised Manuscript: May 20, 2008
Manuscript Accepted: May 21, 2008
Published: July 2, 2008

Xuan Li and Yi Jin, "Appropriate interface termination to improve imaging resolution of multilayered structures in the infrared and optical canalization regime," J. Opt. Soc. Am. A 25, 1861-1865 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966-3969 (2000). [CrossRef] [PubMed]
  2. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534-537 (2005). [CrossRef] [PubMed]
  3. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media,” J. Opt. Soc. Am. B 23, 498-505 (2006). [CrossRef]
  4. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt. 50, 1419-1430 (2003). [CrossRef]
  5. J. B. Pendry and S. A. Ramakrishna, “Refining the perfect lens,” Physica B 338, 329-332 (2003). [CrossRef]
  6. P. A. Belov and Y. Hao, “Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime,” Phys. Rev. B 73, 113110 (2006). [CrossRef]
  7. P. Belov, C. R. Simovski, and P. Ikonen, “Canalization of subwavelength images by electromagnetic crystals,” Phys. Rev. B 71, 193105 (2005). [CrossRef]
  8. A. Alù and N. Engheta, “Three-dimensional nanotransmission lines at optical frequencies: A recipe for broadband negative-refraction optical metamaterials,” Phys. Rev. B 75, 024304 (2007). [CrossRef]
  9. D. M. Pustai, S. Shi, C. Chen, A. Sharkawy, and D. W. Prather, “Analysis of splitters for self-collimated beams in planar photonic crystals,” Opt. Express 12, 1823-1831 (2004). [CrossRef] [PubMed]
  10. M. Augustin, R. Iliew, C. Etrich, D. Schelle, H.-J. Fuchs, U. Peschel, S. Nolte, E.-B. Kley, F. Lederer, and A. Tünnermann, “Self-guiding of infrared and visible light in photonic crystal slabs,” Appl. Phys. B 81, 313-319 (2005). [CrossRef]
  11. S. S. Xiao, M. Qiu, Z. C. Ruan, and S. L. He, “Influence of the surface termination to the point imaging by a photonic crystal slab with negative refraction,” Appl. Phys. Lett. 85, 4269-4271 (2004). [CrossRef]
  12. L. Wu, S. He, and L. F. Shen, “Abnormal phenomena in a one-dimensional periodic structure containing left-handed materials,” Phys. Rev. B 67, 235103 (2003). [CrossRef]
  13. X. Li, S. L. He, and Y. Jin, “Subwavelength focusing with a multilayered Fabry-Perot structure at optical frequencies,” Phys. Rev. B 75, 045103 (2007). [CrossRef]
  14. G. Shvets and Y. Urzhumov, “Polariton-enhanced near field lithography and imaging with infrared light,” Mater. Res. Soc. Symp. Proc. 820, R1.2.1 (2004). [CrossRef]
  15. D. Korobkin, Y. Urzhumov, and G. Shvets, “Enhanced near-field resolution in midinfrared using metamaterials,” J. Opt. Soc. Am. B 23, 468-478 (2005). [CrossRef]
  16. E. D. Palik, Handbook of Optical Constants of Solids I (Academic, 1998), pp. 353-357.
  17. P. Winsemius, F. F. van Kampen, H. P. Lengkeek, and C. G. van Went, “Temperature dependence of the optical properties of Au, Ag and Cu,” J. Phys. F: Met. Phys. 6, 1583-606 (1976). [CrossRef]
  18. B. Dold and R. Mecke, “Optische Eigenschaften von Edelmetallen, Übergangsmetallen und deren Legierungen im Infrarot,” Optik (Stuttgart) 22, 435-446 (1965).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited