OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1866–1874

Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries

Kevin J. Chalut, Michael G. Giacomelli, and Adam Wax  »View Author Affiliations


JOSA A, Vol. 25, Issue 8, pp. 1866-1874 (2008)
http://dx.doi.org/10.1364/JOSAA.25.001866


View Full Text Article

Enhanced HTML    Acrobat PDF (387 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Inverse light scattering analysis seeks to associate measured scattering properties with the most probable theoretical scattering distribution. Although Mie theory is a spherical scattering model, it has been used successfully for discerning the geometry of spheroidal scatterers. The goal of this study was an in-depth evaluation of the consequences of analyzing the structure of spheroidal geometries, which are relevant to cell and tissue studies in biology, by employing Mie-theory-based inverse light scattering analysis. As a basis for this study, the scattering from spheroidal geometries was modeled using T-matrix theory and used as test data. In a previous study, we used this technique to investigate the case of spheroidal scatterers aligned with the optical axis. In the present study, we look at a broader scope which includes the effects of aspect ratio, orientation, refractive index, and incident light polarization. Over this wide range of parameters, our results indicate that this method provides a good estimate of spheroidal structure.

© 2008 Optical Society of America

OCIS Codes
(170.6510) Medical optics and biotechnology : Spectroscopy, tissue diagnostics
(290.1350) Scattering : Backscattering
(290.3200) Scattering : Inverse scattering
(290.4020) Scattering : Mie theory

ToC Category:
Scattering

History
Original Manuscript: February 28, 2008
Revised Manuscript: May 16, 2008
Manuscript Accepted: May 16, 2008
Published: July 2, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Kevin J. Chalut, Michael G. Giacomelli, and Adam Wax, "Application of Mie theory to assess structure of spheroidal scattering in backscattering geometries," J. Opt. Soc. Am. A 25, 1866-1874 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-8-1866


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 1-20.
  2. H. C. van de Hulst, Light Scattering by Small Particles, Structure of Matter Series (Wiley, 1957), p. 470.
  3. K. J. Chalut, S. Chen, J. D. Finan, M. G. Giacomelli, F. Guilak, K. W. Leong, and A. Wax, “Label-free, high-throughput measurements of dynamic changes in cell nuclei using angle-resolved low coherence interferometry,” Biophys. J. 94, 4948-4956 (2008). [CrossRef] [PubMed]
  4. K. J. Chalut, L. A. Kresty, J. W. Pyhtila, R. Nines, M. Baird, V. E. Steele, and A. Wax, “In situ assessment of intraepithelial neoplasia in hamster trachea epithelium using angle-resolved low-coherence interferometry,” Cancer Epidemiol. Biomarkers Prev. 16, 223-227 (2007). [CrossRef] [PubMed]
  5. J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus by using angle-resolved low-coherence interferometry,” Gastrointest. Endosc. 65, 487-491 (2007). [CrossRef] [PubMed]
  6. J. D. Keener, K. J. Chalut, J. W. Pyhtila, and A. Wax, “Application of Mie theory to determine the structure of spheroidal scatterers in biological materials,” Opt. Lett. 32, 1326-1328 (2007). [CrossRef] [PubMed]
  7. M. I. Mishchenko, L. D. Travis, and J. W. Hovenier, Light Scattering by Nonspherical Particles: Theory, Measurements and Applications (Academic, 2000), pp. 147-170. [CrossRef]
  8. Y. L. Kim, Y. Liu, V. M. Turzhitsky, R. K. Wali, H. K. Roy, and V. Backman, “Depth-resolved low-coherence enhanced backscattering,” Opt. Lett. 30, 741-743 (2005). [CrossRef] [PubMed]
  9. J. R. Mourant, T. M. Johnson, and J. P. Freyer, “Characterizing mammalian cells and cell phantoms by polarized backscattering fiber-optic measurements,” Appl. Opt. 40, 5114-5123 (2001). [CrossRef]
  10. W. J. Brown, J. W. Pyhtila, N. G. Terry, K. J. Chalut, T. A. D'Amico, T. A. Sporn, J. V. Obando, and A. Wax, “Review and recent development of angle-resolved low-coherence interferometry for detection of precancerous cells in human esophageal epithelium,” IEEE J. Sel. Top. Quantum Electron. 14, 88-97 (2008). [CrossRef]
  11. M. R. Jones, B. P. Curry, M. Q. Brewster, and K. H. Leong, “Inversion of light-scattering measurements for particle size and optical constants: Theoretical study,” Appl. Opt. 33, 4025-4034 (1994). [CrossRef] [PubMed]
  12. L. Tsang, J. A. Kong, and R. T. Shin, Theory of Microwave Remote Sensing, Wiley Series in Remote Sensing (Wiley, 1985), pp. xiii, 613.
  13. P. B. Wong, G. L. Tyler, J. E. Baron, E. M. Gurrola, and R. A. Simpson, “A three-wave FDTD approach to surface scattering with applications to remote sensing of geophysical surfaces,” IEEE Trans. Antennas Propag. 44, 504-514 (1996). [CrossRef]
  14. K. S. Shifrin and G. Tonna, “Inverse problems related to light-scattering in the atmosphere and ocean,” Adv. Geophys. 34, 175-252 (1993). [CrossRef]
  15. S. Holler, Y. L. Pan, R. K. Chang, J. R. Bottiger, S. C. Hill, and D. B. Hillis, “Two-dimensional angular optical scattering for the characterization of airborne microparticles,” Opt. Lett. 23, 1489-1491 (1998). [CrossRef]
  16. R. Pearson, R. M. Fitzgerald, and J. Polanco, “An inverse reconstruction model to retrieve aerosol size distribution from optical depth data,” J. Opt. A, Pure Appl. Opt. 9, 56-59 (2007). [CrossRef]
  17. X. Li, Z. G. Chen, A. Taflove, and V. Backman, “Equiphase-sphere approximation for analysis of light scattering by arbitrarily shaped nonspherical particles,” Appl. Opt. 43, 4497-4505 (2004). [CrossRef] [PubMed]
  18. P. L. Marston, “Cusp diffraction catastrophe from spheroids: Generalized rainbows and inverse scattering,” Opt. Lett. 10, 588-590 (1985). [CrossRef] [PubMed]
  19. S. Holler, M. Surbek, R. K. Chang, and Y. L. Pan, “Two-dimensional angular optical scattering patterns as droplets evolve into clusters,” Opt. Lett. 24, 1185-1187 (1999). [CrossRef]
  20. J. A. Lock, “Ray scattering by an arbitrarily oriented spheroid. I. Diffraction and specular reflection,” Appl. Opt. 35, 500-514 (1996). [CrossRef] [PubMed]
  21. Y. P. Han and Z. S. Wu, “Scattering of a spheroidal particle illuminated by a Gaussian beam,” Appl. Opt. 40, 2501-2509 (2001). [CrossRef]
  22. P. L. Marston, “Catastrophe optics of spheroidal drops and generalized rainbows,” J. Quant. Spectrosc. Radiat. Transf. 63, 341-351 (1999). [CrossRef]
  23. T. G. Jurgens, A. Taflove, K. Umashankar, and T. G. Moore, “Finite-difference time-domain modeling of curved surfaces,” IEEE Trans. Antennas Propag. 40, 357-366 (1992). [CrossRef]
  24. V. Backman, V. Gopal, M. Kalashnikov, K. Badizadegan, R. Gurjar, A. Wax, I. Georgakoudi, M. Mueller, C. W. Boone, R. R. Dasari, and M. S. Feld, “Measuring cellular structure at submicrometer scale with light scattering spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 7, 887-893 (2001). [CrossRef]
  25. J. R. Mourant, M. Canpolat, C. Brocker, O. Esponda-Ramos, T. M. Johnson, A. Matanock, K. Stetter, and J. P. Freyer, “Light scattering from cells: The contribution of the nucleus and the effects of proliferative status,” J. Biomed. Opt. 5, 131-137 (2000). [CrossRef] [PubMed]
  26. A. Wax, C. H. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82, 2256-2264 (2002). [CrossRef] [PubMed]
  27. L. T. Perelman, V. Backman, M. Wallace, G. Zonios, R. Manoharan, A. Nusrat, S. Shields, M. Seiler, C. Lima, T. Hamano, I. Itzkan, J. Van Dam, J. M. Crawford, and M. S. Feld, “Observation of periodic fine structure in reflectance from biological tissue: A new technique for measuring nuclear size distribution,” Phys. Rev. Lett. 80, 627-630 (1998). [CrossRef]
  28. K. Sokolov, J. Galvan, A. Myakov, A. Lacy, R. Lotan, and R. Richards-Kortum, “Realistic three-dimensional epithelial tissue phantoms for biomedical optics,” J. Biomed. Opt. 7, 148-156 (2002). [CrossRef] [PubMed]
  29. J. R. Mourant, T. M. Johnson, S. Carpenter, A. Guerra, T. Aida, and J. P. Freyer, “Polarized angular dependent spectroscopy of epithelial cells and epithelial cell nuclei to determine the size scale of scattering structures,” J. Biomed. Opt. 7, 378-387 (2002). [CrossRef] [PubMed]
  30. J. W. Pyhtila, H. Ma, A. J. Simnick, A. Chilkoti, and A. Wax, “Determining long range correlations by observing coherent light scattering from in vitro cell arrays with angle-resolved low coherence interferometry,” J. Biomed. Opt. 11, 024603 (2006). [CrossRef]
  31. J. R. Mourant, T. M. Johnson, V. Doddi, and J. P. Freyer, “Angular dependent light scattering from multicellular spheroids,” J. Biomed. Opt. 7, 93-99 (2002). [CrossRef] [PubMed]
  32. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000), pp. xxiii, 852.
  33. R. Drezek, M. Guillaud, T. Collier, I. Boiko, A. Malpica, C. Macaulay, M. Follen, and R. Richards-Kortum, “Light scattering from cervical cells throughout neoplastic progression: Influence of nuclear morphology, DNA content, and chromatin texture,” J. Biomed. Opt. 8, 7-16 (2003). [CrossRef] [PubMed]
  34. R. Drezek, A. Dunn, and R. Richards-Kortum, “Light scattering from cells: Finite-difference time-domain simulations and goniometric measurements,” Appl. Opt. 38, 3651-3661 (1999). [CrossRef]
  35. A. M. K. Nilsson, P. Alsholm, A. Karlsson, and S. Andersson-Engels, “T-matrix computations of light scattering by red blood cells,” Appl. Opt. 37, 2735-2748 (1998). [CrossRef]
  36. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Muller, Q. Zhang, G. Zonios, E. Kline, J. A. McGilligan, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, and M. S. Feld, “Detection of preinvasive cancer cells,” Nature (London) 406, 35-36 (2000). [CrossRef]
  37. M. B. Wallace, L. T. Perelman, V. Backman, J. M. Crawford, M. Fitzmaurice, M. Seiler, K. Badizadegan, S. J. Shields, I. Itzkan, R. R. Dasari, J. Van Dam, and M. S. Feld, “Endoscopic detection of dysplasia in patients with Barrett's esophagus using light-scattering spectroscopy,” Gastroenterology 119, 677-682 (2000). [CrossRef] [PubMed]
  38. L. B. Lovat, K. Johnson, M. R. Novelli, M. O'Donovan, S. Davies, C. R. Selvasekar, S. Thorpe, I. J. Bigio, and S. G. Bown, “Optical biopsy using elastic scattering spectroscopy can detect high grade dysplasia and cancer in Barrett's esophagus,” Gastroenterology 126, A39 (2004).
  39. J. W. Pyhtila, K. J. Chalut, J. D. Boyer, J. Keener, T. D'Amico, M. Gottfried, F. Gress, and A. Wax, “In situ detection of nuclear atypia in Barrett's esophagus by using angle-resolved low-coherence interferometry,” Gastrointest. Endosc. 65, 487-491 (2007). [CrossRef] [PubMed]
  40. J. R. Mourant, I. J. Bigio, J. Boyer, R. L. Conn, T. Johnson, and T. Shimada, “Spectroscopic diagnosis of bladder cancer with elastic light scattering,” Lasers Surg. Med. 17, 350-357 (1995). [CrossRef] [PubMed]
  41. I. J. Bigio, S. G. Bown, G. Briggs, C. Kelley, S. Lakhani, D. Pickard, P. M. Ripley, I. G. Rose, and C. Saunders, “Diagnosis of breast cancer using elastic-scattering spectroscopy: Preliminary clinical results,” J. Biomed. Opt. 5, 221-228 (2000). [CrossRef] [PubMed]
  42. K. S. Johnson, D. W. Chicken, D. C. O. Pickard, A. C. Lee, G. Briggs, M. Falzon, I. J. Bigio, M. R. Keshtgar, and S. G. Bown, “Elastic scattering spectroscopy for intraoperative determination of sentinel lymph node status in the breast,” J. Biomed. Opt. 9, 1122-1128 (2004). [CrossRef] [PubMed]
  43. I. Georgakoudi, E. E. Sheets, M. G. Muller, V. Backman, C. P. Crum, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Trimodal spectroscopy for the detection and characterization of cervical precancers in vivo,” Am. J. Obstet. Gynecol. 186, 374-382 (2002). [CrossRef] [PubMed]
  44. A. Dhar, K. S. Johnson, M. R. Novelli, S. G. Bown, I. J. Bigio, L. B. Lovat, and S. L. Bloom, “Elastic scattering spectroscopy for the diagnosis of colonic lesions: Initial results of a novel optical biopsy technique,” Gastrointest. Endosc. 63, 257-261 (2006). [CrossRef] [PubMed]
  45. A. Wax, J. W. Pyhtila, R. N. Graf, R. Nines, C. W. Boone, R. R. Dasari, M. S. Feld, V. E. Steele, and G. D. Stoner, “Prospective grading of neoplastic change in rat esophagus epithelium using angle-resolved low-coherence interferometry,” J. Biomed. Opt. 10, 051604 (2005). [CrossRef] [PubMed]
  46. A. Wax, C. H. Yang, M. G. Muller, R. Nines, C. W. Boone, V. E. Steele, G. D. Stoner, R. R. Dasari, and M. S. Feld, “In situ detection of neoplastic transformation and chemopreventive effects in rat esophagus epithelium using angle-resolved low-coherence interferometry,” Cancer Res. 63, 3556-3559 (2003). [PubMed]
  47. B. L. Danielson and C. Y. Boisrobert, “Absolute optical ranging using low coherence interferometry,” Appl. Opt. 30, 2975-2979 (1991). [CrossRef] [PubMed]
  48. J. W. Pyhtila, R. N. Graf, and A. Wax, “Determining nuclear morphology using an improved angle-resolved low coherence interferometry system,” Opt. Express 11, 3473-3484 (2003). [CrossRef] [PubMed]
  49. M. I. Mishchenko, “Calculation of the amplitude matrix for a nonspherical particle in a fixed orientation,” Appl. Opt. 39, 1026-1031 (2000). [CrossRef]
  50. A. Wax, “Low-coherence light-scattering calculations for polydisperse size distributions,” J. Opt. Soc. Am. A 22, 256-261 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited