OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1875–1884

Unitary transformation between Cartesian- and polar-pixellated screens

Luis Edgar Vicent and Kurt Bernardo Wolf  »View Author Affiliations


JOSA A, Vol. 25, Issue 8, pp. 1875-1884 (2008)
http://dx.doi.org/10.1364/JOSAA.25.001875


View Full Text Article

Enhanced HTML    Acrobat PDF (1020 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A unitary transformation between Cartesian and polar pixellations of finite two-dimensional images is obtained from the su ( 2 ) model for discrete and finite signals. This transformation analyzes the original image into its finite Cartesian “Laguerre–Kravchuk” modes (involving Wigner little-d functions) and synthesizes it back using a polar mode basis with the same set of mode coefficients. The polar basis is derived from the quantum angular momentum theory, and its modes are given by Clebsch–Gordan coefficients.

© 2008 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(070.2025) Fourier optics and signal processing : Discrete optical signal processing
(070.2465) Fourier optics and signal processing : Finite analogs of Fourier transforms
(270.5585) Quantum optics : Quantum information and processing
(200.6046) Optics in computing : Smart pixel systems

ToC Category:
Fourier Optics and Signal Processing

History
Original Manuscript: March 14, 2008
Manuscript Accepted: May 20, 2008
Published: July 3, 2008

Citation
Luis Edgar Vicent and Kurt Bernardo Wolf, "Unitary transformation between Cartesian- and polar-pixellated screens," J. Opt. Soc. Am. A 25, 1875-1884 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-8-1875


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. C. Biedenharn and J. D. Louck, “Angular momentum in quantum physics,” in Encyclopedia of Mathematics and Its Applications, G.-C.Rota, ed. (Addison-Wesley, 1981), Vol. 8.
  2. N. M. Atakishiyev and K. B. Wolf, “Fractional Fourier-Kravchuk transform,” J. Opt. Soc. Am. A 14, 1467-1477 (1997). [CrossRef]
  3. N. M. Atakishiyev, G. S. Pogosyan, L. E. Vicent, and K. B. Wolf, “Finite two-dimensional oscillator: I. The Cartesian model,” J. Phys. A 34, 9381-9398 (2001). [CrossRef]
  4. N. M. Atakishiyev, G. S. Pogosyan, L. E. Vicent, and K. B. Wolf, “Finite two-dimensional oscillator: II. The radial model,” J. Phys. A 34, 9399-9415 (2001). [CrossRef]
  5. T. Alieva and K. B. Wolf, “Rotation and gyration of finite two-dimensional modes,” J. Opt. Soc. Am. A 25, 365-370 (2008). [CrossRef]
  6. M. Arik, N. M. Atakishiyev, and K. B. Wolf, “Quantum algebraic structures compatible with the harmonic oscillator Newton equation,” J. Phys. A 32, L371-L376 (1999). [CrossRef]
  7. A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions (McGraw-Hill, 1953), Vol. 2.
  8. N. Ya. Vilenkin, Special Functions and the Theory of Group Representations (American Mathematical Society, 1968).
  9. N. M. Atakishiyev and S. K. Suslov, “Difference analogs of the harmonic oscillator,” Theor. Math. Phys. 85, 1055-1062 (1991). [CrossRef]
  10. M. Krawtchouk, “Sur une généralization des polinômes d'Hermite,” Acad. Sci., Paris, C. R. 189, 620-622 (1929).
  11. N. M. Atakishiyev, L. E. Vicent, and K. B. Wolf, “Continuous vs. discrete fractional Fourier transforms,” J. Comput. Appl. Math. 107, 73-95 (1999). [CrossRef]
  12. K. B. Wolf and G. Krötzsch, “Geometry and dynamics in the fractional discrete Fourier transform,” J. Opt. Soc. Am. A 24, 651-658 (2007). [CrossRef]
  13. L. E. Vicent, “Coherent states for the finite su(2)-oscillator model,” Int. J. Mod. Phys. B 20, 1934-1941 (2006). [CrossRef]
  14. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, “Contraction of the finite one-dimensional oscillator,” Int. J. Mod. Phys. A 18, 317-327 (2003). [CrossRef]
  15. A. Frank and P. Van Isacker, Algebraic Methods in Molecular and Nuclear Structure Physics (Wiley, 1998).
  16. R. Simon and K. B. Wolf, “Fractional Fourier transforms in two dimensions,” J. Opt. Soc. Am. A 17, 2368-2381 (2000). [CrossRef]
  17. K. B. Wolf, Geometric Optics on Phase Space (Springer-Verlag, 2004).
  18. L. Barker, Ç. Çandan, T. Hakioğlu, M. A. Kutay, and H. M. Ozaktas, “The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform,” J. Phys. A 33, 2209-2222 (2000). [CrossRef]
  19. R. Gilmore, Lie Groups Lie Algebras and Some of Their Applications (Wiley, 1974).
  20. L. E. Vicent, “Análisis de Señales Discretas Finitas mediante el Modelo de Oscilador Finito de su(2),” Ph.D. dissertation (Universidad Autónoma del Estado de Morelos, 2007).
  21. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskiĭ, Quantum Theory of Angular Momentum (World Scientific, 1988).
  22. N. M. Atakishiyev, G. S. Pogosyan, and K. B. Wolf, “Contraction of the finite radial oscillator,” Int. J. Mod. Phys. A 18, 329-341 (2003). [CrossRef]
  23. W. Miller, Jr., “Symmetry groups and separation of variables,” in Encyclopedia of Mathematics, G.-C.Rota, ed. (Addison-Wesley, 1977), Vol. 4.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited