OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1894–1901

Holographic features of spatial coherence wavelets

Roman Castaneda, Rafael Betancur, and Diego Hincapie  »View Author Affiliations


JOSA A, Vol. 25, Issue 8, pp. 1894-1901 (2008)
http://dx.doi.org/10.1364/JOSAA.25.001894


View Full Text Article

Enhanced HTML    Acrobat PDF (365 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The behavior of the marginal power spectrum as a two-channel-multiplexed hologram is analyzed. Its “negative energies” make it quite different from the conventional holograms, i.e., it is not recordable in general and the objects to be reconstructed (the cross-spectral densities at both the aperture and the observation planes) are virtual. The holographic reconstruction results from the superposition of the spatial coherence wavelets that carry the marginal power spectrum. These features make the marginal power spectrum a powerful tool for analysis and synthesis of optical fields, for instance, in optical information processing (signal encryption) and beam shaping for microlithography.

© 2008 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: April 4, 2008
Manuscript Accepted: May 10, 2008
Published: July 7, 2008

Citation
Roman Castaneda, Rafael Betancur, and Diego Hincapie, "Holographic features of spatial coherence wavelets," J. Opt. Soc. Am. A 25, 1894-1901 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-8-1894


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gabor, “A new microscopic principle,” Nature 161, 777-778 (1948). [CrossRef] [PubMed]
  2. E. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123-1130 (1962). [CrossRef]
  3. G. Tricoles, “Computer generated holograms: an historical review,” Appl. Opt. 26, 4351-4360 (1987). [CrossRef] [PubMed]
  4. L. Yaroslavsky, Digital Holography and Digital Image Processing: Principles, Methods, Algorithms (Kluwer Academic, 2004).
  5. U. Schnars and W. Jüptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction and Related Techniques (Springer-Verlag, 2005).
  6. J. Herrera and J. Garcia-Sucerquia, “Digital off-axis holography without zero-order diffraction via phase manipulation,” Opt. Commun. 277, 259-263 (2007). [CrossRef]
  7. J. Garcia-Sucerquia, J. Herrera, and D. Velasquez, “DC term filtering techniques in digital holography,” Proc. SPIE 5622, 1353-1358 (2004). [CrossRef]
  8. J. Garcia-Sucerquia, J. Herrera, and D. Velasquez, “Reduction of speckle noise in digital holography by using digital image processing,” Optik (Jena) 116, 44-48 (2005). [CrossRef]
  9. J. Garcia-Sucerquia, J. Herrera, and R. Castaneda, “Incoherent recovering of the spatial resolution in digital holography,” Opt. Commun. 260, 62-67 (2006). [CrossRef]
  10. P. E. Mix, Introduction to Nondestructive Testing (Wiley, 2005).
  11. B. H. Liu, L. Y. Wu, and J. Zhang, “Phase-only SLM generating variable patterns applied in optical connections,” J. Phys.: Conf. Ser. 48, 902-906 (2006). [CrossRef]
  12. G. Coppola, M. Iodice, A. Finizio, S. De Nicola, G. Pierattini, P. Ferraro, C. Magro, and G. E. Spoto, “Digital holography microscope as tool for microelectromechanical systems characterization and design,” J. Microlithogr., Microfabr., Microsyst. 4, 013012 (2005). [CrossRef]
  13. K. B. Wolf and A. L. Rivera, “Holographic information in the Wigner function,” Opt. Commun. 144, 36-42 (1997). [CrossRef]
  14. M. Testorf and A. W. Lohmann, “Holography in phase-space,” Appl. Opt. 47, A70-A77 (2008). [CrossRef] [PubMed]
  15. R. Castaneda and J. Garcia, “Spatial coherence wavelets,” J. Mod. Opt. 50, 1259-1275 (2003). [CrossRef]
  16. R. Castañeda and J. Garcia, “Spatial coherence wavelets: mathematical properties and physical features,” J. Mod. Opt. 50, 2741-2753 (2003). [CrossRef]
  17. R. Castaneda and J. Garcia-Sucerquia, “Electromagnetic spatial coherence wavelets,” J. Opt. Soc. Am. A 23, 81-90 (2006). [CrossRef]
  18. R. Castaneda and J. Garcia-Sucerquia, “Radiometry and spatial coherence wavelets,” Opt. Commun. 248, 147-165 (2005). [CrossRef]
  19. R. Castaneda, “Tensor theory of electromagnetic radiometry,” Opt. Commun. 276, 14-30 (2007). [CrossRef]
  20. R. Castañeda, J. García and J. Carrasquilla, “Quality descriptors of optical beams based on centred reduced moments III: spot moments-based method for laser characterization,” Opt. Commun. 248, 509-519 (2005). [CrossRef]
  21. R. Castaneda, J. Carrasquilla, and J. Herrera, “Radiometric analysis of diffraction of quasi-homogeneous optical fields,” Opt. Commun. 273, 8-20 (2007). [CrossRef]
  22. R. Castaneda, M. Usuga-Castaneda, and J. Herrera-Ramirez, “Experimental evidence of the spatial coherence moiré and the filtering of classes of radiator pairs,” Appl. Opt. 46, 5321-5328 (2007). [CrossRef] [PubMed]
  23. M. Born and E. Wolf, Principles of Optics (Pergamon, 1993).
  24. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  25. M. J. Bastiaans, “Application of the Wigner distribution function to partially coherent light,” J. Opt. Soc. Am. A 3, 1227-1238 (1986). [CrossRef]
  26. D. Dragoman, “The Wigner distribution function in optics and optoelectronics,” in Progress in Optics, E.Wolf, ed., (Elsevier, 1997), Vol. 37, pp. 1-56. [CrossRef]
  27. R. Simon and N. Mukunda, “Optical phase space, Wigner representation and invariant quality parameters,” J. Opt. Soc. Am. A 17, 2440-2463 (2000). [CrossRef]
  28. E. C. G. Sudarshan, “Quantum electrodynamics and light rays,” Physica A 96, 315-320 (1979). [CrossRef]
  29. F. M. Dickey and S. C. Holswade, Laser Beam Shaping: Theory and Techniques (CRC, 2000). [CrossRef]
  30. E. W. Marchand and E. Wolf, “Walthers definition of generalized radiance,” J. Opt. Soc. Am. 64, 1219-1226 (1974). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited