OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 1906–1920

Reconstruction of periodic structures from optical scattering measurements using adjoint equations

Gonzalo R. Feijóo  »View Author Affiliations


JOSA A, Vol. 25, Issue 8, pp. 1906-1920 (2008)
http://dx.doi.org/10.1364/JOSAA.25.001906


View Full Text Article

Acrobat PDF (1097 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new numerical approach to efficiently reconstruct the profile of a grating from measurements of reflection coefficients is demonstrated. The problem is posed in the mathematical framework of an inverse scattering problem and solved using gradient-based algorithms. The gradient is computed efficiently using adjoint equations, which amounts to an extra scattering computation per iteration. For symmetric profiles it is shown that only knowledge of the scattered field is sufficient to compute the gradient. As a result, complex profiles can be reconstructed rapidly, and the method can be potentially used in metrology applications in semiconductors. The technique is demonstrated for the case of TE polarization.

© 2008 Optical Society of America

OCIS Codes
(000.4430) General : Numerical approximation and analysis
(050.0050) Diffraction and gratings : Diffraction and gratings
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(290.3200) Scattering : Inverse scattering

ToC Category:
Scattering

History
Original Manuscript: August 24, 2007
Revised Manuscript: April 7, 2008
Manuscript Accepted: April 25, 2008
Published: July 8, 2008

Citation
Gonzalo R. Feijóo, "Reconstruction of periodic structures from optical scattering measurements using adjoint equations," J. Opt. Soc. Am. A 25, 1906-1920 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-8-1906


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. X. Niu, N. Jakatdar, J. Bao, and C. J. Spanos, “Specular spectroscopic scatterometry,” IEEE Trans. Semicond. Manuf. 14, 97-111 (2001). [CrossRef]
  2. H.-T. Huang and F. L. Terry, Jr., “Spectroscopic ellipsometry and reflectometry from gratings (scatterometry) for critical dimension measurement and in situ, real-time process monitoring,” Thin Solid Films 455, 828-836 (2004). [CrossRef]
  3. R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (North-Holland, 1987).
  4. F.-X. Le Dimet and O. Talagrand, “Variational algorithms for analysis and as similation of meteorological observations: Theoretical aspects,” Tellus 38A, 97-110 (1986).
  5. A. Jameson, “Aerodynamic design via control theory,” J. Sci. Comput. 3, 233-260 (1988). [CrossRef]
  6. S. Arridge and M. Schweiger, “A gradient-based optimization scheme for optical tomography,” Opt. Express 2, 213-226 (1998).
  7. O. Dorn, E. L. Miller, and C. M. Rappaport, “A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets,” Inverse Probl. 16, 1119-1156 (2000). [CrossRef]
  8. G. R. Feijóo, A. A. Oberai, and P. M. Pinsky, “An application of shape optimization in the solution of inverse acoustic scattering problems,” Inverse Probl. 20, 199-228 (2004). [CrossRef]
  9. M. Nevière and E. Popov, Light Propagation in Periodic Media (Marcel-Dekker, 2003).
  10. T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Dover, 2000).
  11. J. B. Keller and D. Givoli, “Exact non-reflecting boundary conditions,” J. Comput. Phys. 82, 172-192 (1989). [CrossRef]
  12. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995).
  13. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface-relief gratings: Enhanced transmittance matrix approach,” J. Opt. Soc. Am. A 12, 1077-1086 (1995).
  14. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996).
  15. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019-1023 (1996).
  16. L. Li, “Use of Fourier series in the analysis of discontinuous structures,” J. Opt. Soc. Am. A 13, 1870-1876 (1996).
  17. P. Gill, W. Murray, and M. Wright, Practical Optimization (Academic, 1981).
  18. R. Fletcher, Practical Methods of Optimization, 2nd ed. (Wiley, 2000).
  19. F. Murat and S. Simon, Etudes de problèmes d'optimal design (Springer-Verlag, Berlin, 1976), J.Cea, ed., Vol. 40 of Lecture Notes in Computer Science, pp. 54-62.
  20. J.-P. Zolesio, “Identification de domains par déformations,” Thèse d'etat (Université de Nice, 1979).
  21. G. E. Jellison and F. A. Modine, “Optical functions of silicon at elevated temperatures,” J. Appl. Phys. 76, 3758-3761 (1994). [CrossRef]
  22. W. C. Chew and J. H. Lin, “A frequency-hopping approach for microwave imaging of large inhomogeneous bodies,” IEEE Microw. Guid. Wave Lett. 5, 439-441 (1995). [CrossRef]
  23. R. M. Al-Assaad and D. M. Byrne, “Error analysis in inverse scatterometry. I. Modeling,” J. Opt. Soc. Am. A 24, 326-338 (2007).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited