OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 8 — Aug. 1, 2008
  • pp: 2088–2094

Can laser speckle flowmetry be made a quantitative tool?

Donald D. Duncan and Sean J. Kirkpatrick  »View Author Affiliations

JOSA A, Vol. 25, Issue 8, pp. 2088-2094 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The ultimate objective of laser speckle flowmetry (and a host of specific implementations such as laser speckle contrast analysis, LASCA or LSCA; laser speckle spatial contrast analysis, LSSCA; laser speckle temporal contrast analysis, LSTCA; etc.) is to infer flow velocity from the observed speckle contrast. Despite numerous demonstrations over the past 25 years of such a qualitative relationship, no convincing quantitative relationship has been proven. One reason is a persistent mathematical error that has been propagated by a host of workers; another is a misconception about the proper autocorrelation function for ordered flow. Still another hindrance has been uncertainty in the specific relationship between decorrelation time and local flow velocity. Herein we attempt to dispel some of these errors and misconceptions with the intent of turning laser speckle flowmetry into a quantitative tool. Specifically we review the underlying theory, explore the impact of various analytic models for relating measured intensity fluctuations to scatterer motion, and address some of the practical issues associated with the measurement and subsequent data processing.

© 2008 Optical Society of America

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(110.6150) Imaging systems : Speckle imaging
(120.3890) Instrumentation, measurement, and metrology : Medical optics instrumentation
(120.6150) Instrumentation, measurement, and metrology : Speckle imaging
(280.2490) Remote sensing and sensors : Flow diagnostics

ToC Category:
Coherence and Statistical Optics

Original Manuscript: March 11, 2008
Revised Manuscript: May 30, 2008
Manuscript Accepted: June 3, 2008
Published: July 23, 2008

Virtual Issues
Vol. 3, Iss. 9 Virtual Journal for Biomedical Optics

Donald D. Duncan and Sean J. Kirkpatrick, "Can laser speckle flowmetry be made a quantitative tool?," J. Opt. Soc. Am. A 25, 2088-2094 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. R. Fercher and J. D. Briers, “Flow visualization by means of single-exposure speckle photography,” Opt. Commun. 37, 326-330 (1981). [CrossRef]
  2. H. Isono, S. Kishi, Y. Kimura, N. Hagiwara, N. Konishi, and H. Fujii, “Observation of choroidal circulation using index of erythrocytic velocity,” Arch. Ophthalmol. (Chicago) 121, 225-231 (2003).
  3. Y. Aizu and T. Asakura, “Coherent optical techniques for diagnostics of retinal blood flow,” J. Biomed. Opt. 4, 61-75 (1999). [CrossRef]
  4. T. Durduran, M. G. Burnett, G. Yu, C. Zhou, D. Furuya, A. G. Yodh, J. A. Detre, and J. H. Greenburg, “Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry,” J. Cereb. Blood Flow Metab. 24, 518-525 (2004). [CrossRef] [PubMed]
  5. T. Yoshimura, “Statistical properties of dynamic speckles,” J. Opt. Soc. Am. A 3, 1032-1054 (1986). [CrossRef]
  6. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005). [CrossRef]
  7. P. Zakharov, A. Völker, A. Buck, B. Weber, and F. Scheffold, “Quantitative modeling of laser speckle imaging,” Opt. Lett. 31, 3465-3467 (2006). [CrossRef] [PubMed]
  8. A. C. Völker, P. Zakharov, B. Weber, F. Buck, and F. Scheffold, “Laser speckle imaging with an active noise reduction scheme,” Opt. Express 13, 9782-9787 (2005). [CrossRef] [PubMed]
  9. T. M. Le, J. S. Paul, H. Al-Nashash, A. Tan, A. R. Luft, F. S. Sheu, and S. H. Ong, “New insights into image processing of cortical blood flow monitors using laser speckle imaging,” IEEE Trans. Med. Imaging 26, 833-842 (2007). [CrossRef]
  10. M. S. D. Smith, E. F. Packulak, and M. G. Sowa, “Development of a laser speckle imaging system for measuring relative blood flow velocity,” Proc. SPIE 6343, 634304 (2006). [CrossRef]
  11. J. W. Goodman, Statistical Optics (Wiley, 1985).
  12. B. Chu, Laser Light Scattering: Basic Principles and Practice, 2nd ed. (Academic, 1991).
  13. A. Papoulis and S. U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th ed. (McGraw-Hill, 2002).
  14. J. C. Ramirez-San-Juan, R. Ramos-Garcia, I. Guizar-Iturbide, G. Martinez-Niconoff, and B. Choi, “Impact of velocity distribution assumption on simplified laser speckle imaging equation,” Opt. Express 16, 3197-3203 (2008). [CrossRef] [PubMed]
  15. M. E. Thomas and D. D. Duncan, “Atmospheric transmission,” in Atmospheric Propagation of Radiation, Vol. 2 of the Infrared & Electro-Optical Systems Handbook, F.G.Smith, ed., (ERIM Infrared Information Analysis Center and SPIE Optical Engineering Press, 1993).
  16. E. Jakeman and K. D. Ridley, Modeling Fluctuations in Scattered Waves (Taylor & Francis, 2006). [CrossRef]
  17. X-L. Wu, D. J. Pine, P. M. Chaikin, J. S. Huang, and D. A. Weitz, “Diffusing-wave spectroscopy in a shear flow,” J. Opt. Soc. Am. B 7, 15-20 (1990). [CrossRef]
  18. S. Yuan, A. Devor, D. A. Boas, and A. K. Dunn, “Determination of optimal exposure time for imaging of blood flow changes with laser speckle contrast imaging,” Appl. Opt. 44, 1823-1830 (2005). [CrossRef] [PubMed]
  19. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts & Company, 2007).
  20. P. A. Lemieux and D. J. Durian, “Investigation of non-Gaussian scattering processes by using nth-order intensity correlation functions,” J. Opt. Soc. Am. A 16, 1651-1664 (1999). [CrossRef]
  21. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics, 2nd ed., J.C.Dainty, ed. (Springer-Verlag, 1984).
  22. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  23. H. Cheng and T. Q. Duong, “Simplified laser-speckle-imaging analysis method and its application to retinal blood flow imaging,” Opt. Lett. 32, 2188-2190 (2007). [CrossRef] [PubMed]
  24. D. D. Duncan, S. J. Kirkpatrick, and R. K. Wang, “Statistics of local speckle contrast,” J. Opt. Soc. Am. A 25, 9-15 (2008). [CrossRef]
  25. H. Cheng, Q. Luo, S. Zeng, S. Chen, J. Cen, and H. Gong, “Modified laser speckle imaging method with improved spatial resolution,” J. Biomed. Opt. 8, 559-564 (2003). [CrossRef] [PubMed]
  26. S. J. Kirkpatrick, D. D. Duncan, R. K. Wang, and M. K. Hinds, “Quantitative temporal contrast imaging for tissue mechanics,” J. Opt. Soc. Am. A 24, 3728-3734 (2007). [CrossRef]
  27. J. D. Briers and S. Webster, “Laser speckle contrast analysis (LASCA): A nonscanning, full-field technique for monitoring capillary blood flow,” J. Biomed. Opt. 1, 174-170 (1996). [CrossRef]
  28. M. Born and E. Wolf, Principles of Optics, 4th ed. (Pergamon, 1970).
  29. A. B. Parthasarathy, W. J. Tom, A. Gopal, X. Zhang, and A. K. Dunn, “Robust flow measurement with multi-exposure speckle imaging,” Opt. Express 16, 1975-1989 (2008). [CrossRef] [PubMed]
  30. A. Roggan, M. Friebel, K. Dörschel, A. Hahn, and G. Müller, “Optical properties of circulating human blood in the wavelength range 400-2500 nm,” J. Biomed. Opt. 4, 36-46 (1999). [CrossRef]
  31. D. J. Durian, “Accuracy of diffusing-wave spectroscopy theories,” Phys. Rev. E 51, 3350-3358 (1995). [CrossRef]
  32. F. Scheffold and R. Cerbino, “New trends in light scattering,” Curr. Opin. Colloid Interface Sci. 12, 50-57 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited