OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 9 — Sep. 1, 2008
  • pp: 2207–2214

Statistical properties of dynamic small-N speckles within highly scattering media

Sergey Ulyanov  »View Author Affiliations

JOSA A, Vol. 25, Issue 9, pp. 2207-2214 (2008)

View Full Text Article

Enhanced HTML    Acrobat PDF (589 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Statistics of the phase and intensity of speckles formed with a small number of scattering events (small-N speckles) within multiple-scattering media have been studied. It has been demonstrated that first-order statistics of the intensity fluctuations of small-N speckles nearly obey a Nakagami n distribution in the case considered. The correlation function of the complex amplitude of scattered light is close to a negative exponent. Theoretical results have been experimentally verified using the Shack–Hartmann wavefront analysis technique.

© 2008 Optical Society of America

OCIS Codes
(030.1670) Coherence and statistical optics : Coherent optical effects
(030.6140) Coherence and statistical optics : Speckle
(030.6600) Coherence and statistical optics : Statistical optics

ToC Category:
Coherence and Statistical Optics

Original Manuscript: January 14, 2008
Revised Manuscript: June 16, 2008
Manuscript Accepted: June 24, 2008
Published: August 8, 2008

Sergey Ulyanov, "Statistical properties of dynamic small-N speckles within highly scattering media," J. Opt. Soc. Am. A 25, 2207-2214 (2008)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. C. Dainty, Laser Speckle and Related Phenomena, Vol. 9 of Topics in Applied Physics Series (Springer, 1975).
  2. P. J. Chandley and H. M. Escamilla, “Speckle from a rough surface when the illuminated region contains few correlation areas: The effect of changing the surface height variance,” Opt. Commun. 29, 151-154 (1979). [CrossRef]
  3. E. Jakeman, “Speckle statistics with a small number of scatterers,” Opt. Eng. (Bellingham) 23, 453-461 (1984).
  4. B. Saleh, Photoelectron Statistics with Applications to Spectroscopy and Optical Communication (Springer-Verlag, 1991), pp. 145-149.
  5. S. S. Ulyanov, D. A. Zimnyakov, and V. V. Tuchin, “Fundamentals and applications of dynamic speckles induced by focused laser beam scattering,” Opt. Eng. (Bellingham) 33, 3189-3201 (1994). [CrossRef]
  6. S. S. Ulyanov, “Speckled speckles statistics with a small number of scatterers. An implication for blood flow measurements,” J. Biomed. Opt. 3, 227-236 (1998). [CrossRef]
  7. M. Kowalczyk and P. Zalicki, “Small-N speckle: Phase-contrast approach,” Proc. SPIE 556, 50-54 (1985).
  8. S. S. Ulyanov, “Dynamics of statistically inhomogeneous speckles: A new type of manifestation of the Doppler effect,” Opt. Lett. 20, 1313-1315 (1995). [CrossRef]
  9. S. S. Ulyanov, “New type of manifestation of the Doppler effect: An application to blood and lymph flow measurements,” Opt. Eng. (Bellingham) 34, 2850-2855 (1995). [CrossRef]
  10. D. A. Weitz and D. J. Pine, “Diffusing wave spectroscopy,” in Dynamic Light Scattering: The Method and Some Applications, W.Brown, ed. (Claredon, 1993), pp. 652-720.
  11. D. J. Pine, D. A. Weitz, G. Maret, P. E. Wolf, E. Herbolzheomer, and P. M. Chaikin, “Dynamical correlations of multiple scattered light,” in Scattering and Localization of Classical Waves in Random Media, Vol. 8 of World Series on Direction in Condensed Matter Physics, P.Sheng, ed. (World Scientific, 1990), pp. 312-372.
  12. N. Menon and D. J. Durian, “Particle motions in a gas-fluidized bed of sand,” Phys. Rev. Lett. 79, 3407-3410 (1997). [CrossRef]
  13. E. M. Furst and A. P. Gast, “Particle dynamics in magnetorheological suspensions using diffusing-wave spectroscopy,” Phys. Rev. E 58, 3372-3376 (1998). [CrossRef]
  14. M. H. Kao, A. G. Yodh, and D. J. Pine, “Observation of Brownian motion on the time scale of hydrodynamic interactions,” Phys. Rev. Lett. 70, 242-245 (1993). [CrossRef] [PubMed]
  15. A. D. Gopal and D. J. Durian, “Nonlinear bubble dynamics in a slowly driven foam,” Phys. Rev. Lett. 75, 2610-2613 (1995). [CrossRef] [PubMed]
  16. R. Hohler, S. Cohen-Addad, and H. Hoballah, “Periodic nonlinear bubble motion in aqueous foam under oscillating shear strain,” Phys. Rev. Lett. 79, 1154-1157 (1997). [CrossRef]
  17. F. Scheffold, S. E. Skipetrov, S. Romer, and P. Schurtenberger, “Diffusing-wave spectroscopy of nonergodic media,” Phys. Rev. E 63, 061404 (2001). [CrossRef]
  18. T. G. Mason, K. Ganesan, J. H. Van-Zanten, D. Wirtz, and S. C. Kuo, “Particle tracking microrheology of complex fluids,” Phys. Rev. Lett. 79, 3282-3285 (1997). [CrossRef]
  19. I. V. Meglinsky and S. E. Skipetrov, “Diffusing-wave spectroscopy in randomly inhomogeneous media with spatially localized scatterer flows,” J. Exp. Theor. Phys. 86, 661-665 (1998). [CrossRef]
  20. P. A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: The role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57, 4498-4515 (1998). [CrossRef]
  21. S. Ulyanov, “Diffusing wave spectroscopy with a small number of scattering events: An implication to microflow diagnostics,” Phys. Rev. E 72, 052902 (2005). [CrossRef]
  22. V. L. Kuzmin, I. V. Meglinsky, and D. Yu. Churmakov, “Stochastic Modelling of Coherent Phenomena in Strongly Inhomogeneous Media,” J. Exp. Theor. Phys. 101, 22-32 (2005). [CrossRef]
  23. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  24. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge Univ. Press, 2002).
  25. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: A tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005). [CrossRef]
  26. S. L. Jacques and L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J.van Gemert, eds. (Plenum, 1995), Chap. 4.
  27. J. W. Goodman, Statistical Optics (Wiley, 1985).
  28. I. S. Gonorovsky, Radiotechnical Circuits and Signals (Sovietskoe Radio, 1977).
  29. J. S. Bendat and A. G. Piersol, Random Data. Analysis and Measurement Procedures (Wiley, 1986).
  30. D. J. Pine, D. A. Weitz, J. X. Zhu, and E. Herbolzheimer, “Diffusing-wave spectroscopy: Dynamic light scattering in the multiple scattering limit,” J. Phys. (France) 51, 2101-2127 (1990). [CrossRef]
  31. M. Nakagami, “The m-distribution--a general formula of intensity distribution in rapid fading,” in Statistical Methods on Radio Wave Propagation, W.C.Hoffman, ed. (Pergamon, 1960), pp. 3-36.
  32. M. Yoshikawa and H. Kayano, “Analysis of non-Gaussian speckle by Nakagami m-distribution,” Jpn. J. Appl. Phys., Part 1 26, 974-975 (1987). [CrossRef]
  33. A. N. Korolevich and I. V. Meglinsky, “Experimental study of the potential use of diffusing wave spectroscopy to investigate the structural characteristics of blood under multiple scattering,” Bioelectrochemistry 52, 223-227 (2000). [CrossRef] [PubMed]
  34. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarsky, Principles of Statistical Radiophysics. Part 2 (Springer, 1989).
  35. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26, 2166-2185 (1990). [CrossRef]
  36. B. C. Platt and R. Shack, “History and principles of Shack-Hartmann wavefront sensing,” J. Refract. Surg. 17, S573-S577 (2001). [PubMed]
  37. A. F. Brooks, T.-L. Kelly, P. J. Veitch, and J. Munch, “Ultra-sensitive wavefront measurement using a Hartmann sensor,” Opt. Express 15, 10370-10375 (2007). [CrossRef] [PubMed]
  38. D. A. Boas, K. K. Bizheva, and A. M. Siegel, “Using dynamic low-coherence interferometry to image Brownian motion within highly scattering media,” Opt. Lett. 23, 319-321 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited