OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 25, Iss. 9 — Sep. 1, 2008
  • pp: 2347–2356

Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map

Biswanath Banerjee, Srijeeta Bagchi, Ram Mohan Vasu, and Debasish Roy  »View Author Affiliations


JOSA A, Vol. 25, Issue 9, pp. 2347-2356 (2008)
http://dx.doi.org/10.1364/JOSAA.25.002347


View Full Text Article

Enhanced HTML    Acrobat PDF (931 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We describe a noniterative method for recovering optical absorption coefficient distribution from the absorbed energy map reconstructed using simulated and noisy boundary pressure measurements. The source reconstruction problem is first solved for the absorbed energy map corresponding to single- and multiple-source illuminations from the side of the imaging plane. It is shown that the absorbed energy map and the absorption coefficient distribution, recovered from the single-source illumination with a large variation in photon flux distribution, have signal-to-noise ratios comparable to those of the reconstructed parameters from a more uniform photon density distribution corresponding to multiple-source illuminations. The absorbed energy map is input as absorption coefficient times photon flux in the time-independent diffusion equation (DE) governing photon transport to recover the photon flux in a single step. The recovered photon flux is used to compute the optical absorption coefficient distribution from the absorbed energy map. In the absence of experimental data, we obtain the boundary measurements through Monte Carlo simulations, and we attempt to address the possible limitations of the DE model in the overall reconstruction procedure.

© 2008 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.5120) Imaging systems : Photoacoustic imaging
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4580) Medical optics and biotechnology : Optical diagnostics for medicine
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: January 14, 2008
Revised Manuscript: July 8, 2008
Manuscript Accepted: July 16, 2008
Published: August 21, 2008

Virtual Issues
Vol. 3, Iss. 11 Virtual Journal for Biomedical Optics

Citation
Biswanath Banerjee, Srijeeta Bagchi, Ram Mohan Vasu, and Debasish Roy, "Quantitative photoacoustic tomography from boundary pressure measurements: noniterative recovery of optical absorption coefficient from the reconstructed absorbed energy map," J. Opt. Soc. Am. A 25, 2347-2356 (2008)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-25-9-2347


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  2. S. Srinivasan, B. W. Pogue, S. D. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography,” Proc. Natl. Acad. Sci. U.S.A. 100, 12349-12354 (2003). [CrossRef] [PubMed]
  3. L. V. Wang, “Ultrasound-modulated biophotonic imaging: A review of acousto-optical tomography and photoacoustic tomography,” Dis. Markers 19, 123-138 (2003, 2004). [PubMed]
  4. X. Wang, Y. Xu, M. Xu, S. Yokoo, E. S. Fry, and L. V. Wang, “Photoacoustic tomography of biological tissues with high cross-section resolution: Reconstruction and experiments,” Med. Phys. 29, 2799-2805 (2002). [CrossRef]
  5. G. Yao and L. V. Wang, “Theoretical and experimental studies of ultrasound-modulated optical tomography in biological tissue,” Appl. Opt. 39, 659-664 (2000). [CrossRef]
  6. M. Xu and L. V. Wang, “Photoacoustic imaging in biomedicine,” Rev. Sci. Instrum. 77, 041101-22 (2006). [CrossRef]
  7. G. Paltauf and P. E. Dyer, “Photomechanical processes and effects in ablation,” Chem. Rev. (Washington, D.C.) 103, 487-518 (2002). [CrossRef]
  8. B. T. Cox and P. C. Beard, “Fast calculation of pulsed photoacoustic fields in fluids using k-space methods,” J. Acoust. Soc. Am. 117, 3616-3627 (2005). [CrossRef] [PubMed]
  9. Z. Yuan, H. Zhao, C. Wu, Q. Zhang, and H. Jiang, “Finite-element-based photoacoustic tomography: phantom and chicken bone experiments,” Appl. Opt. 45, 3177-3183 (2006). [CrossRef] [PubMed]
  10. C. G. A. Hoelen and F. F. M. deMul, “Image reconstruction for photoacoustic scanning of tissue structures,” Appl. Opt. 39, 5872-5883 (2000). [CrossRef]
  11. H. Jiang, Z. Yuan, and X. Gu, “Spatially varying optical and acoustic property reconstruction using finite-element-based photoacoustic tomography,” J. Opt. Soc. Am. A 23, 878-888 (2006). [CrossRef]
  12. J. Laufer, D. Delpy, C. Elwell, and P. Beard, “Quantitative spatially resolved measurement of tissue chromophore concentrations using photoacoustic spectroscopy: application to the measurement of blood oxygenation and haemoglobin oncentration,” Phys. Med. Biol. 52, 141-168 (2007). [CrossRef]
  13. B. T. Cox, S. R. Arridge, K. P. Köstli, and P. C. Beard, “Two-dimensional quantitative photoacoustic image reconstruction of absorption distributions in scattering media by use of a simple iterative method,” Appl. Opt. 45, 1866-1875 (2006). [CrossRef] [PubMed]
  14. Z. Yuan and H. Jiang, “Quantitative photoacoustic tomography: Recovery of optical absorption coefficient maps of heterogeneous media,” Appl. Phys. Lett. 88, 231101 (2006). [CrossRef]
  15. B. T. Cox, S. R. Arridge, and P. C. Beard, “Gradient-based quantitative photoacoustic image reconstruction for molecular imaging,” Proc. SPIE 6437, 1T1-1T9 (2007).
  16. Z. Yuan, Q. Wang, and H. Jiang, “Reconstruction of optical absorption coefficient maps of heterogeneous media by photoacoustic tomography coupled with diffusion equation based regularized Newton method,” Opt. Express 15, 18076-18081 (2007). [CrossRef] [PubMed]
  17. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, and L. V. Wang, “Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain,” Nat. Biotechnol. 21, 813-816 (2003). [CrossRef]
  18. J. Ripoll and V. Ntziachristos, “Quantitative photoacoustic inversion formulas for scattering and absorption media,” Phys. Rev. E 71, 031912(1-9) (2005). [CrossRef]
  19. Y. Yamada, “Light-tissue interaction and optical imaging in biomedicine,” Annu. Rev. Heat Transfer 6, 1-59 (1995).
  20. K. Furutsu, “Diffusion equation derived from space time transport equation,” J. Opt. Soc. Am. 70, 360-366 (1980). [CrossRef]
  21. S. R. Arridge, “Optical tomography in medical imaging,” Inverse Probl. 15, R41-R93 (1999). [CrossRef]
  22. S. L. Jacques and L. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue, A.J.Welch and M.J. C.van Gemert, eds. (Plenum, 1995).
  23. S. R. Arridge and M. Schweiger, “A gradient-based optimization scheme for optical tomography,” Opt. Express 6, 213-226 (1998). [CrossRef]
  24. C. Zhu, R. H. Byrd, and J. Nocedal, “L-BFGS-B: algorithm 778: L-BFGS-B, FORTRAN routines for large scale bound constrained optimization,” ACM Trans. Math. Softw. 23, 550-560 (1997). [CrossRef]
  25. M. Schweiger, S. R. Arridge, M. Hiraoka, and D. Delpy, “The finite element method for the propagation of light in scattering media: Boundary and source conditions,” Med. Phys. 22, 1779-1792 (1995). [CrossRef] [PubMed]
  26. J. Laufer, C. Elwell, D. Delpy, and P. Beard, “In vitro measurements of absolute blood oxygen saturation using pulsed near-infrared photoacoustic spectroscopy: accuracy and resolution,” Phys. Med. Biol. 50, 4409-4428 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited