Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Sensing polarization with variable coherence tomography

Not Accessible

Your library or personal account may give you access

Abstract

Variable coherence tomography (VCT) was recently developed by Baleine and Dogariu for the purpose of directly sensing the second-order statistical properties of a randomly scattering volume [J. Opt. Soc. Am. A 21, 1917 (2004) ]. In this paper we generalize the theory of VCT to include polarized inputs and anisotropic scatterers. In general the measurement of the scattered coherency matrix or Stokes vector is not adequate to describe the scattering, as these quantities depend on the coherence state of the incident beam. However, by controlling the polarized coherence properties of the source beam, VCT can be generalized to probe the polarimetric scattering properties of objects from a single-point Stokes vector or coherency matrix measurements. With polarized VCT, we are able to design a method that can measure analogous information to the polarimetric bidirectional reflection distribution function (BRDF), but do it from monostatic data. This capability would allow the BRDF to be measured remotely without having to adjust either the incident or observation angle with respect to the target.

© 2008 Optical Society of America

Full Article  |  PDF Article
More Like This
Variable-coherence tomography for inverse scattering problems

Erwan Baleine and Aristide Dogariu
J. Opt. Soc. Am. A 21(10) 1917-1923 (2004)

Rough surface scattering using a source able to produce an incident beam with controlled polarization and coherence

Neil C. Bruce, Oscar G. Rodríguez-Herrera, Claudio N. Ramírez, and Martha Rosete-Aguilar
Appl. Opt. 60(5) 1182-1190 (2021)

Scattering polarization by anisotropic biomolecules

Tsu-Wei Nee, Soe-Mie F. Nee, De-Ming Yang, and Yu-Shan Huang
J. Opt. Soc. Am. A 25(5) 1030-1038 (2008)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (2)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (42)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.