OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 1–9

Linear-quadratic-Gaussian control for adaptive optics systems using a hybrid model

Douglas P. Looze  »View Author Affiliations

JOSA A, Vol. 26, Issue 1, pp. 1-9 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (683 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents a linear-quadratic-Gaussian (LQG) design based on the equivalent discrete-time model of an adaptive optics (AO) system. The design model incorporates deformable mirror dynamics, an asynchronous wavefront sensor and zero-order hold operation, and a continuous-time model of the incident wavefront. Using the structure of the discrete-time model, the dimensions of the Riccati equations to be solved are reduced. The LQG controller is shown to improve AO system performance under several conditions.

© 2008 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: April 14, 2008
Revised Manuscript: August 28, 2008
Manuscript Accepted: October 14, 2008
Published: December 3, 2008

Douglas P. Looze, "Linear-quadratic-Gaussian control for adaptive optics systems using a hybrid model," J. Opt. Soc. Am. A 26, 1-9 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Hardy, Adaptive Optics for Astronomical Telescopes (Oxford University Press, 1998).
  2. M. C. Roggemann and B. M. Welsh, Imaging through Turbulence (CRC Press, 1996).
  3. D. P. Looze, “Discrete-time model of an adaptive optics system,” J. Opt. Soc. Am. A 24, 2850-2863 (2007). [CrossRef]
  4. E. Gendron and P. Léna, “Astronomical adaptive optics. I: Modal control optimization,” Astron. Astrophys. 291, 337-347 (1994).
  5. B. L. Ellerbroek, C. van Loan, N. P. Pitsianis, and R. J. Plemmons, “Optimizing closed-loop adaptive-optics performance with use of multiple control bandwidths,” J. Opt. Soc. Am. A 11, 2871-1886 (1994). [CrossRef]
  6. C. Dessenne, P.-Y. Madec, and G. Rousset, “Optimization of a predictive controller for closed-loop adaptive optics,” Appl. Opt. 37, 4623-4633 (1998). [CrossRef]
  7. L. A. Poyneer and J.-P. Véran, “Optimal modal Fourier-transform wavefront control,” J. Opt. Soc. Am. A 22, 1515-1526 (2005). [CrossRef]
  8. R. N. Paschall and D. J. Anderson, “Linear quadratic Gaussian control of a deformable mirror adaptive optics system with time-delayed measurements,” Appl. Opt. 32, 6347-6358 (1993). [CrossRef] [PubMed]
  9. D. P. Looze, M. Kasper, S. Hippler, O. Beker, and R. Weiss, “Optimal compensation and implementation for adaptive optics systems,” Exp. Astron. 15, 67-88 (2003). [CrossRef]
  10. B. Le Roux, J.-M. Conan, C. Kulcsár, H.-F. Raynaud, L. M. Mugnier, and T. Fusco, “Optimal control law for multiconjugate adaptive optics,” J. Opt. Soc. Am. A 21, 1261-1276 (2004). [CrossRef]
  11. D. M. Wiberg, C. E. Max, and D. T. Gavel, “A spatial non-dynamic LQG controller. Part II, theory,” in Procedings of 2004 IEEE Conference on Decision and Control (IEEE, 2004), pp. 3333-3338.
  12. D. P. Looze, “Minimum variance control structure for adaptive optics systems,” J. Opt. Soc. Am. A 23, 603-612 (2006). [CrossRef]
  13. C. Petit, J.-M. Conan, C. Kulcsár, H.-F. Raynaud, T. Fusco, J. Montri, and D. Rabaud, “First laboratory demonstration of closed-loop Kalman based optimal control for vibration filtering and simplified MCAO,” Proc. SPIE , 6272, 62721T-1-62721T-12 (2006). [CrossRef]
  14. C. Petit, J.-M. Conan, C. Kulcsár, H.-F. Raynaud, T. Fusco, J. Montri, and D. Rabaud, “Optimal control for multi-conjugate adaptive optics,” C. R. Phys. 6, 1059-1069 (2005). [CrossRef]
  15. K. Hinnen, M. Verhaegen, and N. Doelman, “Exploiting the spatiotemporal correlation in adaptive optics using data-driven H2--optimal control,” J. Opt. Soc. Am. A 24, 1714-1725 (2007). [CrossRef]
  16. C. Kulcsár, H.-F. Raynaud, C. Petit, J.-M. Conan, and P. V. de Lesegno, “Optimal control, observers, and integrators in adaptive optics,” Opt. Express 14, 7464-7476 (2006). [CrossRef] [PubMed]
  17. H. S. Witsenhausen, “Separation of estimation and control for discrete time systems,” Proc. IEEE 59, 1557-1566 (1971). [CrossRef]
  18. E. I. Jury, Sampled-Data Control Systems (Wiley, 1958).
  19. K. Ogata, Discrete-Time Control Systems (Prentice-Hall, 1987).
  20. K. J. Åström and B. Wittenmark, Computer-Controlled Systems (Prentice-Hall, 1997).
  21. P. Dorato and A. H. Levis, “Optimal linear regulators: the discrete-time case,” IEEE Trans. Autom. Control AC-16, 613-620 (1971).
  22. T. Chen and B. A. Francis, Optimal Sampled-Data Control Systems (Springer-Verlag, 1995).
  23. R. Köhler, “CHEOPS performance simulations,” MPIA Doc. no. CHEOPS-TRE-MPI-00033 (Max Planck Institüt fur Astronomie, 2004).
  24. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization (Academic, 1981).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited