OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 135–141

Bragg diffraction of multilayer volume holographic gratings under ultrashort laser pulse readout

Aimin Yan, Liren Liu, Yanan Zhi, De’an Liu, and Jianfeng Sun  »View Author Affiliations


JOSA A, Vol. 26, Issue 1, pp. 135-141 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000135


View Full Text Article

Enhanced HTML    Acrobat PDF (533 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The multilayer coupled wave theory is extended to systematically investigate the diffraction properties of multilayer volume holographic gratings (MVHGs) under ultrashort laser pulse readout. Solutions for the diffracted and transmitted intensities, diffraction efficiency, and the grating bandwidth are obtained in transmission MVHGs. It is shown that the diffraction characteristics depend not only on the input pulse duration but also on the number and thickness of grating layers and the gaps between holographic layers. This analysis can be implemented as a useful tool to aid with the design of multilayer volume grating-based devices employed in optical communications, pulse shaping, and processing.

© 2008 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(160.5320) Materials : Photorefractive materials
(260.1960) Physical optics : Diffraction theory
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Ultrafast Optics

History
Original Manuscript: August 8, 2008
Revised Manuscript: November 16, 2008
Manuscript Accepted: November 17, 2008
Published: December 19, 2008

Citation
Aimin Yan, Liren Liu, Yanan Zhi, De'an Liu, and Jianfeng Sun, "Bragg diffraction of multilayer volume holographic gratings under ultrashort laser pulse readout," J. Opt. Soc. Am. A 26, 135-141 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-1-135


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. K. Gaylord and M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894-937 (1985). [CrossRef]
  2. L. Solymar and D. J. Cooke, Volume Holography and Volume Gratings (Academic, 1981).
  3. S. Wu, T. K. Gaylord, E. N. Glytsis, and Y. Wu, “Angular sensitivities of volume gratings for substrate-mode optical interconnects,” Appl. Opt. 44, 4447-4453 (2005). [CrossRef] [PubMed]
  4. K. Spariosu, I. Tengara, and T. Jannson, “Stratified volume diffractive elements: modeling and applications,” Proc. SPIE 3133, 101-109 (1997). [CrossRef]
  5. D. Yang, H. Wang, X. Guo, J. Zhao, and H. Xiang, “Wavelength demultiplexing with layered multiple Bragg gratings in LiNbO3:Fe crystal,” Appl. Opt. 46, 5604-5607 (2007). [CrossRef] [PubMed]
  6. D. V. Raymond and H. Lambertus, “Dynamic multiple wavelength filter using a stratified volume holographic optical element,” U.S. patent 5,640,256 (June 17, 1997).
  7. D. M. Chambers, G. P. Nordin, and S. Kim, “Fabrication and analysis of a three-layer stratified volume diffractive optical element high-efficiency grating,” Opt. Express 11, 27-38 (2003). [CrossRef] [PubMed]
  8. A. P. Yakimovich, “Multilayer three-dimensional holographic gratings,” Opt. Spectrosc. 49, 85-88 (1980).
  9. G. P. Nordin, R. V. Johnson, and A. R. Tanguay, “Diffraction properties of stratified volume holographic optical elements,” J. Opt. Soc. Am. A 9, 2206-2217 (1992). [CrossRef]
  10. D. M. Chambers and G. P. Nordin, “Stratified volume diffractive optical elements as high-efficiency gratings,” J. Opt. Soc. Am. A 16, 1184-1193 (1999). [CrossRef]
  11. R. V. Johnson and A. R. Tanguay, “Optical beam propagation method for birefringent phase grating diffraction,” Opt. Eng. 25, 235-249 (1986).
  12. G. A. Rakuljic and V. Leyva, “Volume holographic narrow-band optical filter,” Opt. Lett. 18, 459-461 (1993). [CrossRef] [PubMed]
  13. H. Kogelink, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2047 (1969).
  14. V. A. Komotskii and V. F. Nikulin, “Theoretical analysis of diffraction of a Gaussian optical beam by a system of two diffraction gratings,” Opt. Spectrosc. 63, 239-242 (1987).
  15. R. D. Vre and L. Hesselink, “Analysis of photorefractive stratified volume holographic optical elements,” J. Opt. Soc. Am. B 11, 1800-1808 (1994). [CrossRef]
  16. Y. Ding, D. D. Nolte, Z. Zheng, A. Kanan, A. M. Weiner, and G. A. Brost, “Bandwidth study of volume holography in photorefractive InP:Fe for femtosecond pulse readout at 1.5 μm,” J. Opt. Soc. Am. B 15, 2763-2768 (1998). [CrossRef]
  17. C. Wang, L. Liu, A. Yan, D. Liu, D. Li, and W. Qu, “Pulse shaping properties of volume holographic gratings in anisotropic media,” J. Opt. Soc. Am. A 23, 3191-3196 (2006). [CrossRef]
  18. A. Yan, L. Liu, D. Liu, Y. Zhou, Z. Luan, and C. Wang, “Analysis of an ultrashort pulsed finite beam diffracted by volume gratings,” J. Opt. A, Pure Appl. Opt. 9, 66-72 (2007). [CrossRef]
  19. P. Günter and J.-P. Huignard, “Photorefractive effects and materials,” in Fundamental Phenomena, P.Günter and J.-P.Huignard, eds., Vol. 1 of Photorefractive Materials and Their Applications (Springer-Verlag, 1988), pp. 7-70.
  20. D. S. Smith, H. D. Riccius, and R. P. Edwin, “Refractive indices of lithium niobate,” Opt. Commun. 17, 332-335 (1976). [CrossRef]
  21. S. Shi, G. Chen, W. Zhao, and J. Liu, Nonlinear Optics (Xi'An, 2003), pp. 371 (in Chinese).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited