OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 163–172

Hue and saturation shifts from spatially induced blackness

David L. Bimler, Galina V. Paramei, and Chingis A. Izmailov  »View Author Affiliations

JOSA A, Vol. 26, Issue 1, pp. 163-172 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (1049 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We studied changes in the color appearance of a chromatic stimulus as it underwent simultaneous contrast with a more luminous surround. Three normal trichromats provided color-naming descriptions for a 10 cd m 2 monochromatic field while a broadband white annulus surround ranged in luminance from 0.2 cd m 2 to 200 cd m 2 . Descriptions of the chromatic field included Red, Green, Blue, Yellow, White, and Black or their combinations. The naming frequencies for each color/surround were used to calculate measures of similarity among the stimuli. Multidimensional scaling analysis of these subjective similarities resulted in a four-dimensional color space with two chromatic axes, red–green and blue–yellow, and two achromatic axes, revealing separate qualities of blackness/lightness and saturation. Contrast-induced darkening of the chromatic field was found to be accompanied by shifts in both hue and saturation. Hue shifts were similar to the Bezold–Brücke shift; shifts in saturation were also quantified. A stage model is proposed to account for the relationships among blackness induction and the inherent nonlinearities in chromatic and achromatic processing.

© 2008 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.4060) Vision, color, and visual optics : Vision modeling

ToC Category:
Vision, Color, and Visual Optics

Original Manuscript: June 24, 2008
Revised Manuscript: September 15, 2008
Manuscript Accepted: September 21, 2008
Published: December 24, 2008

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

David L. Bimler, Galina V. Paramei, and Chingis A. Izmailov, "Hue and saturation shifts from spatially induced blackness," J. Opt. Soc. Am. A 26, 163-172 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. M. Purdy, “Spectral hue as a function of intensity,” Am. J. Psychol. 43, 541-559 (1931). [CrossRef]
  2. D. M. Purdy, “The Bezold-Brücke phenomenon and contours of constant hue,” Am. J. Psychol. 49, 313-315 (1937). [CrossRef]
  3. S. Coren and B. Keith, “Bezold-Brücke effect: Pigment or neural location?” J. Opt. Soc. Am. 60, 559-562 (1970). [CrossRef] [PubMed]
  4. K. Fuld and T. A. Otto, “Colors of monochromatic lights that vary in contrast-induced brightness,” J. Opt. Soc. Am. A 2, 76-83 (1985). [CrossRef] [PubMed]
  5. D. M. Purdy, “On the saturations and chromatic thresholds of the spectral colours,” Br. J. Psychol. 21, 282-313 (1931).
  6. A. Valberg, B. Lange-Malecki, and T. Seim, “Colour changes as a function of luminance,” Perception 20, 655-668 (1991). [CrossRef] [PubMed]
  7. D. L. Bimler and G. V. Paramei, “Bezold-Brücke effect in normal trichromats and protanopes,” J. Opt. Soc. Am. A 22, 2120-2136 (2005). [CrossRef]
  8. J. Gordon and I. Abramov, “Scaling procedures for specifying color appearance,” Color Res. Appl. 13, 146-152 (1988). [CrossRef]
  9. K. Fuld, “The contribution of chromatic and achromatic valence to spectral saturation,” Vision Res. 31, 237-246 (1991). [CrossRef] [PubMed]
  10. R. M. Boynton and J. Gordon, “Bezold-Brücke hue shift measured by color-naming technique,” J. Opt. Soc. Am. 55, 78-86 (1965). [CrossRef]
  11. R. N. Shepard and J. D. Carroll, “Parametric representation of nonlinear data structures,” in International Symposium on Multivariate Analysis, P.R.Krishnaiah, ed. (Academic, 1966), pp. 561-592.
  12. A. D. Logvinenko and L. T. Maloney, “The proximity structure of achromatic surface colours and the impossibility of asymmetric lightness matching,” Percept. Psychophys. 68, 76-83 (2006). [CrossRef] [PubMed]
  13. Y. Nayatani, “On attributes of achromatic and chromatic object-color perceptions,” Color Res. Appl. 25, 318-322 (2000). [CrossRef]
  14. I. Lie, “Psychophysical invariants of achromatic colour vision: I. The multidimensionality of achromatic colour appearance,” Scand. J. Psychol. 10, 167-175 (1969). [CrossRef] [PubMed]
  15. P. Heggelund, “A bidimensional theory of achromatic color vision,” Vision Res. 32, 2107-2119 (1992). [CrossRef] [PubMed]
  16. C. A. Izmailov and E. N. Sokolov, “Spherical model of color and brightness discrimination,” Psychol. Sci. 2, 249-259 (1991). [CrossRef]
  17. T. Vladusich, M. P. Lucassen, and F. W. Cornelissen, “Brightness and darkness as perceptual dimensions,” PLOS Comput. Biol. 3(10), e179 (2007). doi: 10.1371/journal.pcbi.0030179. [CrossRef]
  18. K. Shinomori, B. E. Schefrin, and J. S. Werner, “Spectral mechanisms of spatially induced blackness: data and quantitative model,” J. Opt. Soc. Am. A 14, 372-387 (1997). [CrossRef]
  19. G. N. Rautian, “New anomaloscope,” Biofizika 2, 734-742 (1957) (in Russian).
  20. G. V. Paramei, “Singing the Russian blues: An argument for culturally basic color terms,” Cross-Cult. Res. 39, 10-38 (2005). [CrossRef]
  21. T. S. Troscianko, “Saturation as a function of test-field size and surround luminance,” Color Res. Appl. 7, 89-94 (1982). [CrossRef]
  22. I. T. Pitt and L. M. Winter, “Effect of surround on perceived saturation,” J. Opt. Soc. Am. 64, 1328-1331 (1974). [CrossRef] [PubMed]
  23. R. M. Boynton, “Color, hue and wavelength,” in Handbook of Perception (Vol. 5, Vision), E.C.Carterette and M.P.Friedman, eds. (Academic, 1975), pp. 300-347.
  24. C. A. Izmailov, E. N. Sokolov, and S. Chtioui, “Spherical model of color discrimination under the conditions of simultaneous color contrast,” Vestnik Mosk. un-ta. Ser. 14. Psikhologiya No. 4, 21-36 (1999) (in Russian).
  25. D. Bimler, G. V. Paramei, and C. A. Izmailov, “A whiter shade of pale, a blacker shade of dark: Parameters of spatially induced blackness,” Visual Neurosci. 23, 579-582 (2006). [CrossRef]
  26. K. Fuld, T. A. Otto, and C. W. Slade, “Spectral responsivity of the white-black channel,” J. Opt. Soc. Am. A 3, 1182-1188 (1986). [CrossRef] [PubMed]
  27. E. Hering, Outlines of a Theory of the Light Sense. Translated by L. M. Hurvich and D. Jameson (Harvard U. Press, 1920/1964).
  28. P. C. Quinn, B. R. Wooten, and E. J. Ludman, “Achromatic color categories,” Percept. Psychophys. 37, 198-204 (1985). [CrossRef] [PubMed]
  29. V. J. Volbrecht and J. S. Werner, “Temporal induction of blackness: 2. Spectral efficiency and tests of additivity,” Vision Res. 29, 1437-1455 (1989). [CrossRef] [PubMed]
  30. K. Fuld, J. S. Werner, and B. R. Wooten, “The possible elemental nature of brown,” Vision Res. 23, 631-637 (1983). [CrossRef] [PubMed]
  31. P. C. Quinn, J. L. Rosano, and B. R. Wooten, “Evidence that brown is not an elemental color,” Percept. Psychophys. 43, 156-164 (1988). [CrossRef] [PubMed]
  32. V. J. Volbrecht and R. Kliegl, “The perception of blackness: An historical and contemporary review,” in Color Vision: Perspectives from Different Disciplines, W.G. K.Backhaus, R.Kliegl, and J.S.Werner, eds. (De Gruyter, 1998), pp. 187-206. [CrossRef]
  33. R. M. Evans and B. K. Swenholt, “Chromatic strength of colors. III. Chromatic surrounds and discussion,” J. Opt. Soc. Am. 59, 628-634 (1969). [CrossRef] [PubMed]
  34. R. M. Evans and B. K. Swenholt, “Chromatic strength of colors: Dominant wavelength and purity,” J. Opt. Soc. Am. 57, 1319-1324 (1967). [CrossRef] [PubMed]
  35. K. Uchikawa, K. Koida, T. Meguro, Y. Yamauchi, and I. Kuriki, “Brightness, not luminance, determines transition from the surface-color to the aperture-color mode for colored lights,” J. Opt. Soc. Am. A 18, 737-746 (2001). [CrossRef]
  36. K. Shinomori, Y. Nakano, and K. Uchikawa, “Influence of the illuminance and spectral composition of surround fields on spatially induced blackness,” J. Opt. Soc. Am. A 11, 2383-2388 (1994). [CrossRef]
  37. V. J. Volbrecht, J. S. Werner, and C. M. Cicerone, “Additivity of spatially induced blackness,” J. Opt. Soc. Am. A 7, 106-112 (1990). [CrossRef] [PubMed]
  38. J. S. Werner, C. M. Cicerone, R. Kliegl, and D. DellaRosa, “Spectral efficiency of blackness induction,” J. Opt. Soc. Am. A 1, 981-986 (1984). [CrossRef] [PubMed]
  39. J. Gordon and R. Shapley, “Brightness contrast inhibits color induction: Evidence for a new kind of color theory,” Spatial Vis. 19, 133-146 (2006). [CrossRef]
  40. L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384-404 (1957). [CrossRef] [PubMed]
  41. R. L. De Valois and K. K. De Valois, “A multi-stage color model,” Vision Res. 33, 1053-1065 (1993). [CrossRef] [PubMed]
  42. J. S. Werner, “Human colour vision: 2. Colour appearance and cortical transformations,” in Neuronal Coding of Perceptual Systems. Series on Biophysics and Biocybernetics, W.G. K.Backhaus, ed. (World Scientific, 2001), Vol. 9, pp. 475-497.
  43. A. Valberg and T. Seim, “Neural mechanisms of chromatic and achromatic vision,” Color Res. Appl. 33, 433-443 (2008). [CrossRef]
  44. G. Wyszecki and W. S. Stiles, Color Science: Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982), p. 410 ff.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited