OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 184–187

Comparison of transition-matrix sampling procedures

David Yevick, Michael Reimer, and Bjarne Tromborg  »View Author Affiliations

JOSA A, Vol. 26, Issue 1, pp. 184-187 (2009)

View Full Text Article

Enhanced HTML    Acrobat PDF (154 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We compare the accuracy of the multicanonical procedure with that of transition-matrix models of static and dynamic communication system properties incorporating different acceptance rules. We find that for appropriate ranges of the underlying numerical parameters, algorithmically simple yet highly accurate procedures can be employed in place of the standard multicanonical sampling algorithm.

© 2008 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.2400) Fiber optics and optical communications : Fiber properties
(260.5430) Physical optics : Polarization

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: July 9, 2008
Revised Manuscript: September 18, 2008
Manuscript Accepted: October 16, 2008
Published: December 24, 2008

David Yevick, Michael Reimer, and Bjarne Tromborg, "Comparison of transition-matrix sampling procedures," J. Opt. Soc. Am. A 26, 184-187 (2009)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. B. Berg and T. Neuhaus, “Multicanonical algorithms for first-order phase transitions,” Phys. Lett. B 267, 249-253 (1991). [CrossRef]
  2. D. Yevick, “Multicanonical communication system modeling--Application to PMD statistics,” IEEE Photon. Technol. Lett. 14, 1512-1514 (2002). [CrossRef]
  3. D. Yevick, “The accuracy of multicanonical system models,” IEEE Photon. Technol. Lett. 15, 224-226 (2003). [CrossRef]
  4. T. Lu, D. Yevick, L. Yan, B. Zhang, and A. E. Willner, “An experimental approach to multicanonical sampling,” IEEE Photon. Technol. Lett. 16, 1978-1980 (2004). [CrossRef]
  5. J-S. Wang and R. Swendsen, “Transition matrix Monte Carlo method,” J. Stat. Phys. 106, 245-285 (2002). [CrossRef]
  6. M. Fitzgerald, R. Picard, and R. Silver, “Monte Carlo transition dynamics and variance reduction,” J. Stat. Phys. 98, 321-345 (2000). [CrossRef]
  7. D. Yevick and M. Reimer, “Transition matrix analysis of system outages,” IEEE Photon. Technol. Lett. 19, 1529-1531 (2007). [CrossRef]
  8. D. Yevick and T. Lu, “Improved multicanonical algorithms,” J. Opt. Soc. Am. A 23, 2912-2918 (2006). [CrossRef]
  9. M. S. Shell, P. Debenedetti, and A. Panagiotopoulos, “An improved Monte Carlo method for direct calculation of the density of states,” J. Chem. Phys. 119, 9406-9411 (2003). [CrossRef]
  10. R. Ghulghazaryan, S. Hayryan, and C. Hu, “Efficient combination of Wang-Landau and transition matrix Monte Carlo methods for protein simulations,” J. Comput. Chem. 28, 715-726 (2006). [CrossRef] [PubMed]
  11. D. Yevick and M. Reimer, “Modified transition matrix simulations of communication systems,” IEEE Commun. Lett. 12, 755-757 (2008). [CrossRef]
  12. M. Karlsson, “Probability density functions of the differential group delay in optical fiber communication systems,” J. Lightwave Technol. 19, 324-331 (2001). [CrossRef]
  13. T. Lu, D. Yevick, B. Hamilton, D. Dumas, and M. Reimer, “An experimental realization of biased multicanonical sampling,” IEEE Photon. Technol. Lett. 17, 1583-2585 (2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited