OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Stephen A. Burns
  • Vol. 26, Iss. 1 — Jan. 1, 2009
  • pp: 19–29

Modal-based tomographic imaging from far-zone observations

Ersel Karbeyaz and Carey M. Rappaport  »View Author Affiliations


JOSA A, Vol. 26, Issue 1, pp. 19-29 (2009)
http://dx.doi.org/10.1364/JOSAA.26.000019


View Full Text Article

Enhanced HTML    Acrobat PDF (661 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel method of optical diffraction tomography (ODT) to image weakly scattering, electrically large, two-dimensional (2D) objects using the far-zone scattered field data is presented. The proposed technique is based on the expansion of the target object function in terms of Fourier–Bessel basis functions and an alternative approximation for the total electric field within the support of the investigated scatterer. Analytical (Mie) plane-wave scattering by a layered, circularly symmetric, lossy cylinder, and finite-difference time-domain simulations involving plane-wave scattering by a more general, lossless phantom are utilized to compare the performance of the proposed method with that of the standard ODT techniques, which are based on the Born approximation and the Fourier diffraction theorem. Quantitative and qualitative superiority of the presented method is demonstrated. The proposed 2D technique can be readily extended to more realistic three-dimensional cases. With proper (cylindrical–spherical) receiver configuration, the proposed method can be used without being confined to far-zone observations.

© 2008 Optical Society of America

OCIS Codes
(100.3010) Image processing : Image reconstruction techniques
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(110.6960) Imaging systems : Tomography
(290.3200) Scattering : Inverse scattering

ToC Category:
Image Processing

History
Original Manuscript: June 19, 2008
Revised Manuscript: October 14, 2008
Manuscript Accepted: October 15, 2008
Published: December 4, 2008

Virtual Issues
Vol. 4, Iss. 3 Virtual Journal for Biomedical Optics

Citation
Ersel Karbeyaz and Carey M. Rappaport, "Modal-based tomographic imaging from far-zone observations," J. Opt. Soc. Am. A 26, 19-29 (2009)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-26-1-19


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, 1988).
  2. A. Kirsch, “The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media,” Inverse Probl. 18, 1025-1040 (2002). [CrossRef]
  3. F. K. Gruber, E. A. Marengo, and A. J. Devaney, “Time-reversal imaging with multiple signal classification considering multiple scattering between the targets,” J. Acoust. Soc. Am. 115, 3042-3047 (2004). [CrossRef]
  4. S. Hou, K. Solna, and H. Zhao, “A direct imaging algorithm for extended targets,” Inverse Probl. 22, 1151-1178 (2006). [CrossRef]
  5. E. A. Marengo, R. D. Hernandez, and H. Lev-Ari, “Intensity-only signal-subspace-based imaging,” J. Opt. Soc. Am. A 24, 3619-3635, 2007. [CrossRef]
  6. E. A. Marengo, F. K. Gruber, and F. Simonetti, “Time-reversal MUSIC imaging of extended targets,” IEEE Trans. Image Process. 16, 1967-1984 (2007). [CrossRef] [PubMed]
  7. F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory (Springer, 2006).
  8. A. J. Devaney, “A filtered backpropagation algorithm for diffraction tomography,” Ultrason. Imaging 4, 336-350 (1982). [CrossRef] [PubMed]
  9. A. J. Devaney, “Diffraction tomographic reconstruction from intensity data,” IEEE Trans. Image Process. 1, 221-228 (1992). [CrossRef] [PubMed]
  10. M. H. Maleki, A. J. Devaney, and A. Schatzberg, “Tomographic reconstruction from optical scattered intensities,” J. Opt. Soc. Am. A 9, 1356-1363 (1992). [CrossRef]
  11. G. Gbur and E. Wolf, “Diffraction tomography without phase information,” Opt. Lett. 27, 1890-1892 (2002). [CrossRef]
  12. G. Gbur, M. A. Anastasio, Y. Huang, and D. Shi, “Spherical-wave intensity diffraction tomography,” J. Opt. Soc. Am. A 22, 230-238 (2005). [CrossRef]
  13. T. C. Wedberg and J. J. Stamnes, “Comparison of phase-retrieval methods for optical diffraction tomography,” Pure Appl. Opt. 4, 39-54 (1995). [CrossRef]
  14. P. Guo and A. J. Devaney, “Digital microscopy using phase-shifting digital holography with two reference waves,” Opt. Lett. 29, 857-859 (2004). [CrossRef] [PubMed]
  15. A. J. Devaney and M. Dennison, “Inverse scattering in inhomogeneous background media,” Inverse Probl. 19, 855-870 (2003). [CrossRef]
  16. P. Guo and A. J. Devaney, “Comparison of reconstruction algorithms for optical diffraction tomography,” J. Opt. Soc. Am. A 22, 2338-2347 (2005). [CrossRef]
  17. J. Y. Cheng and A. J. Devaney, “Inverse scattering and diffraction tomography in cylindrical background media,” J. Opt. Soc. Am. A 23, 1038-1047 (2006). [CrossRef]
  18. M. Wilding, B. Dale, M. Marino, L. di Matteo, C. Alviggi, M. Pisaturo, L. Lombardi, and G. D. Placida, “Mitochondrial aggregation patterns and activity in human oocytes and preimplantation embryos,” Hum. Reprod. 16, 909-917 (2001). [CrossRef] [PubMed]
  19. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, 1989).
  20. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964).
  21. E. A. Marengo and A. J. Devaney, “The inverse source problem of electromagnetics: linear inversion formulation and minimum energy solution,” IEEE Trans. Antennas Propag. 47, 410-412 (1999). [CrossRef]
  22. J. D. Jackson, Classical Electrodynamics (Wiley, 1998).
  23. T. C. Wedberg, J. J. Stamnes, and W. Singer, “Comparison of the filtered backpropagation and the filtered backprojection algorithms for quantitative tomography,” Appl. Opt. 34, 6575-6581 (1995). [CrossRef] [PubMed]
  24. H. E. Bussey and J. H. Richmond, “Scattering by a lossy dielectric circular cylindrical multilayer: numerical values,” IEEE Trans. Antennas Propag. 23, 723-725 (1975). [CrossRef]
  25. M. Ferrando, A. Broquetas, L. Jofre, and J. M. Rius, “Microwave imaging of multilayer cylinders using optimization techniques,” in IEEE AP-S International Symposium (IEEE, 1989), pp. 1716-1719.
  26. K. Yee, “Numerical solution of inital boundary value problems involving Maxwell's equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302-307 (1966). [CrossRef]
  27. K. S. Kunz and R. J. Luebbers, Finite Difference Time Domain Method for Electromagnetics (CRC-Press, 1993).
  28. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited